Ex:

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_0 in terms of not more than v_s , i_s , R_1 , and R_2 .

sol'n: We assume a ov drop across the + and - inputs of the op-amp, and we replace the op-amp output with a src called v_o' .

We may combine R_1 and R_2 into one resistor: $Reg = R_1 + R_2$.

Reg carries current i, and has v-drop Veg = i, Reg.

We now look for v-loops, including those passing thru the OV drop across the op-amp inputs.

The only v-loop not containing an i-srd is on the right side.

$$-oV - v_{eg} + v_s - v_o' = oV$$

If we ignore dangling wires, we have no nodes where three or more wires are connected.

Thus, we have no i-sum egins for nodes.

We look for components in series that carry the same current.

Finally, we use Ohm's law for Reg:

Since $i_1 = -i_5$, we have

Using our earlier v-loop egh, we can solve for v_o' :

$$v_o' = -v_{eq} + v_{s} = i_{s} R_{eq} + v_{s}$$

We use a v-loop to find vo from vo:

$$+v_o'-v_{5}-v_{o}=ov$$

or
$$V_0 = V_0' - V_5$$

Consistency check:

Let $i_s = 0A$. Then no current flows in R_1 and R_2 . Thus, there is no V-drop across R_1 and R_2 .

We have a simple v-loop thru vo:

$$-ov - ov - ov - v_o = ov$$

Thus $V_0 = OV$.

Plugging is=OA into vo=is Reg gives vo=0 V