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Fig. 1.  3-dimensional view of f(x, y).

Find the covariance, σX Y, of X and Y given the joint probability density function, f(x, y),
illustrated above and described by the following equation:

€ 

f (x) =

3
4

(x + y)
0 ≤ x ≤1
and 0 ≤ y ≤ 2x

0 otherwise

 

 
 

 
 
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Example 3 (cont.)

SOL'N: The bottom of the joint probability density function, shown shaded in Fig. 1,
is shown below.  This is the set of (x, y) values where f(x, y) ≠ 0, (also known
informally as the footprint of f(x, y) and formally as the support of f(x, y)).
This is what we would see looking down on Fig. 1 from the top.
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Fig. 2.  Support (or footprint) of f(x, y).

We use Fig. 2 to determine the limits of integrals in the calculation of the
covariance, σX Y:

σX Y = E(XY) – µXµY

or, using the definitions for each term,

€ 

σXY = xyf (x,y)dx
−∞

∞∫−∞

∞∫ dy − xfX (x)dx ⋅−∞

∞∫ yfY (y)dy−∞

∞∫ .

The first term on the right side, E(XY), involves two integrations, the first of
which has limits for x that depend on the value of y as shown in Fig. 2:

€ 

E(XY ) = xyf (x,y)dx
y / 2
1∫0

2∫ dy

NOTE: The outer integral, in this case for y, has limits that cover the
entire range of possible y values.  Also, having y in the limits of
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the inner integral is acceptable since y looks like a constant when
we integrate with respect to x.

NOTE: The limits of the integrals depend only on the support (or
footprint) of f(x, y).  These functions describing the support are
distinct from f(x, y).  The functions describing the support refer
to values in the x,y-plane, whereas f(x, y) describes values in the z
direction, or height.  Consequently, the functions appearing in the
limits of the integrals are typically of a completely different form
than f(x, y).

Now we substitute for f(x, y):

€ 

E(XY ) = xy 3
4
(x + y)dx

y / 2
1∫0

2∫ dy

To evaluate the inner integral, we treat y as a constant.

€ 

E(XY ) =  y 3
4

x3

3
+
x2

2
y

 

 
  

 

 
  
x=y / 2

x=1

0
2∫ dy

Substituting the limits of integration for x and x only, (the y's in the integrand
remain unchanged), we obtain the expression for the integral over y:

€ 

E(XY ) = y 3
4

 13

3
+

12

2
y

 

 
  

 

 
  −

(y /2)3

3
+

(y /2)2

2
y

 

 
  

 

 
  

 

 
 
 

 

 
 
 0

2∫ dy

or

€ 

E(XY ) =
3
4

y
3

+
y2

2
−
y4

24
−
y4

8

 

 
  

 

 
   0

2∫ dy

or

€ 

E(XY ) =
3
4

y
3

+
y2

2
−
y4

6

 

 
  

 

 
   0

2∫ dy

or

€ 

E(XY ) =
3
4
⋅
1
6

2y + 3y2 − y4( ) 0
2∫ dy
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Performing the integration gives the following result:

€ 

E(XY ) =
3
24

2 y
2

2
+ 3 y

3

3
−
y5

5

 

 
  

 

 
  
0

2

or

€ 

E(XY ) =
1
8
2 ⋅ 2

2

2
+ 32

3

3
−
25

5

 

 
  

 

 
  =
1
8
4 + 8 − 32

5
 

 
 

 

 
 =
1
8
20
5

+
40
5
−
32
5

 

 
 

 

 
 

or

€ 

E(XY ) =
7
10

NOTE: This value for E(XY) is feasible since it lies between the extremes
of 0 and 2 that we obtain from the lower-left corner of the
support, (i.e., (0, 0)) and the upper-right corner of the support,
(i.e., (2,1)).  The average value of xy must lie somewhere between
these extremes.

Since we may perform the double integration in either order—over x and
then over y or over y and then over x—it may be expedient to integrate over y
first.  This also serves as a consistency check.  Here, we perform the
integration as a consistency check and to illustrate the method.

If we integrate over y first, our limits of integration are y = 0 to 2x, as shown
in Fig. 2.

€ 

E(XY ) = xyf (x,y)dy
0
2x∫0

1∫ dx

or

€ 

E(XY ) = xy 3
4
(x + y)dy

0
2x∫0

1∫ dx

or

€ 

E(XY ) =  x 3
4
x y

2

2
+
y3

3

 

 
  

 

 
  
y=0

y=2x

0
1∫ dx
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or

€ 

E(XY ) = x 3
4

x(2x)2

2
+
(2x)3

3
y

 

 
  

 

 
  0

1∫ dx

or

€ 

E(XY ) =
3
4

4x4

2
+

8x4

3

 

 
  

 

 
   0

1∫ dx

or

€ 

E(XY ) =
3
4

12x4

6
+

16x4

6

 

 
  

 

 
   0

1∫ dx

or

€ 

E(XY ) =
7
2

x4 
0
1∫ dx

Performing the integration gives the following result:

€ 

E(XY ) =
7
2
x5

5
0

1

or

€ 

E(XY ) =
7
10

As expected, we get the same answer as before.

Now we turn to the problem of calculating µX and µY .  We begin by finding
the marginal density functions fX(x) and fY (y).  These marginal density
functions are what we obtain if we ignore the other variable.  This is
equivalent to lumping together the probability density for all the possible
values of the ignored variable.  Mathematically, we integrate over the variable
we wish to ignore:

€ 

fX (x) = f (x,y)dy
−∞

∞∫ and

€ 

fY (y) = f (x,y)dx
−∞

∞∫
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Using the information in Fig. 2, we can write the proper limits for the
integrals:

€ 

fX (x) =

3
4
(x + y)dy

0
2x∫ 0 ≤ x ≤1

0 otherwise

 

 
 

 
 

and

€ 

fY (y) =

3
4
(x + y)dx

y / 2
1∫ 0 ≤ y ≤ 2

0 otherwise

 

 
 

 
 

We treat y as a constant when integrating with respect to x, and we treat x as
a constant when integrating with respect to y.

€ 

fX (x) =
3
4
xy +

y2

2

 

 
  

 

 
  
y=0

y=2x

0 ≤ x ≤1

0 otherwise

 

 
  

 
 
 

and

€ 

fY (y) =
3
4

x2

2
+ xy

 

 
  

 

 
  
x=y / 2

x=1

0 ≤ y ≤ 2

0 otherwise

 

 
  

 
 
 

The results of the integrals are functions, since they are probability density
functions.

€ 

fX (x) =
3x2 0 ≤ x ≤1

0 otherwise

 

 
 

 
 

and
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€ 

fY (y) =

3
4
1
2

+ y − (y /2)2

2
+
y2

2

 

 
  

 

 
  

 

 
 
 

 

 
 
 

0 ≤ y ≤ 2

0 otherwise

 

 
  

 
 
 

or

€ 

fY (y) =

3
4
1
2

+ y − 5y
2

8

 

 
 
 

 

 
 
 

0 ≤ y ≤ 2

0 otherwise

 

 
  

 
 
 

Now we find the mean (or expected) value of X and Y  by employing the
definition of expected value for a probability density function of a single
variable.

€ 

µX ≡ E(X) = xfX (x)dx = x ⋅ 3x2dx
0
1∫−∞

∞∫ =
3x4

4
0

1

=
3
4

and

€ 

µY ≡ E(Y ) = yfY (y)dy = y 3
4
1
2

+ y − 5y
2

8

 

 
 
 

 

 
 
 
dy

0
2∫−∞

∞∫

or

€ 

µY =
3
4
1
2
y2

2
+
y3

3
−
5
8
y4

4

 

 
  

 

 
  
0

2

=
3
4
1+
8
3
−
5
2

 

 
 

 

 
 =

7
8

Finally, we can compute the covariance, σX Y:

€ 

σXY = E(XY ) −µXµY =
7
10

−
3
4
7
8

=
112 −105
160

=
7
160


