
 CONCEPTUAL    TOOLS  By:  Neil E. Cotter PROBABILITY
MEAN/EXPECTED VALUE

Mean = center of mass
EXAMPLE 1

EX: A probability density function, f(X), is shown below.  Use the center of mass method
to find E(X), the expected value of X.
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SOL'N: When parts of f(X) are horizontally symmetrical, we can replace them with
a point mass located at their center of mass.  The value of the point mass is
the area of that portion of f(X).

Mathematically, the point mass is represented by a delta (or impulse)
function:
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mδ(x − c)

where m ≡ mass and c ≡ location of center of mass

For the f(X) given in this problem, the half circle has an area of 1/4 and is
centered at –1/2.  The "M" has an area of 1/4 + 1/4 = 1/2 centered at 1, and
the rectangle has an area of 1/4 centered at 5/2.
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These areas are equivalent to point masses as shown below:
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Mathematically, the new f(x) is a summation of delta functions:
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Computing the expected value of this new f(x) we have the following
formal steps, (the first few steps of which may be bypassed, as explained
below):
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We apply the following identity several times:
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This yields the following expression that is the sum of center points times
centers of mass, (an expression which may be written down directly
without going through the preceding steps):
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NOTE: The center-of-mass method may be applied to any shapes, but
it is simplest in the case where shapes are horizontally
symmetric.


