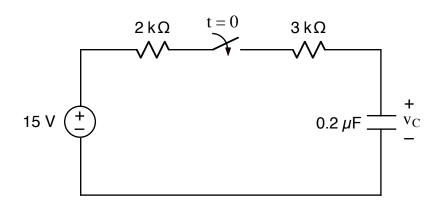
Ex:



After being open for a long time, the switch closes at t = 0. $v_C(t = 0^-) = 0V$. Find $v_C(t)$ for t > 0.

soln: Use the general form of solution for RC problems.

$$v_c(t>0) = v_c(t\rightarrow\infty) + [v_c(0^+) - v_c(t\rightarrow\infty)] e^{-t/R_{TR}^{-1}}$$

We now proceed to find the following values:

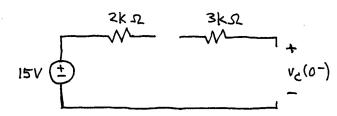
$$v_c(o^+)$$
 , $v_c(+\rightarrow \infty)$, and R_{Th}

To find $v_c(0^+)$, we consider $t=0^-$ and find $v_c(0^-)$. Since v_c is an energy variable that cannot change instantly, we have $v_c(0^+) = v_c(0^-)$.

At t=0, currents and voltages have stabilized, and all time derivatives of currents and voltages are zero.

Thus,
$$i_d = C \frac{dv_d}{dt} = C \cdot 0 = 0$$
. C looks like open.

t=0 : C = open, switch open

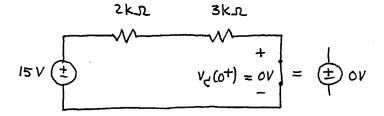


From the circuit diagram, we cannot determine $v_c(o^-)$. The C could be charged to some voltage, and it would remain at that voltage forever.

Fortunately, the problem states that $V_c(0^-) = 0V$.

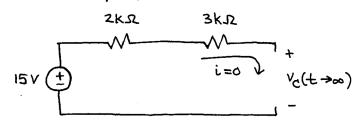
 $t=0^+$: v_c cannot change instantly, so $v_c(0^+) = v_c(0^-) = 0v$

If needed a circuit model at $t=0^+$, we would model the C as a v are with value ov. In other words, C=wire at $t=0^+$.



To find $V_C(t\rightarrow \infty)$, we again use the idea that currents and voltages are stable and C = open.

t→∞: C = open, switch closed



Since no current flows, the voltage drop across the $2k\Omega$ and $3k\Omega$ $R^{1}s$ is ov.

Thus, we have 15V across C:

To find R_{Th}, we remove C and find the Thevenin equivalent resistance seen looking into the terminals where C was connected.

For the circuit we are using here, we can find R_{Th} by turning off the independent 15V source:



 $R_{Th} = 2k\Omega + 3k\Omega = 5k\Omega R_{Th}C = 5k\Omega 0.2\mu F$ -t/Ims = Ims $v_c(t>0) = 15V + (0V - 15V)e$ $v_c(t>\infty) v_c(c^-) v_c(t>\infty)$