Ex:

After being open for a long time, the switch closes at t = 0. The inductor carries no current at time $t = 0^-$.

a) Give expressions for the following in terms of ig, R, L, and C:

$$i(t=0^+)$$
 and $\frac{di(t)}{dt}\Big|_{t=0^+}$

b) Find the numerical values of L and R given the following information:

$$C = 5 \mu F$$
 $s_1 = -10k \text{ rad/s}$ $s_2 = -40k \text{ rad/s}$

sol'n: a) We find initial conditions by starting at $t=0^-$: (Lacts like wire, Cacts like open)

$$i_L(0^-) \approx 0A$$
 since prob says so

We only find the values of these energy variables at t=0 because they will not change instantly when we close the switch.

At t=0+: (model Las i src, Cas v src)

Since $i_L(0^+) = 0 A$, the Lacts like it is not there still.

The current thru R is $V_c(o^+)/R = ig$. Thus, no current is left to flow thru C, and $i(o^+) = 0A$.

To find di , we start by dt | t=0+

writing i in terms of i_L and v_C .

(Don't plug in $t=0^+$ or take d/dt yet.)

Summing current out of the top wire:

$$-ig + i_R + i + i_L = OA$$

Replacing in with ve/R, we have

$$i = ig - (\frac{v_c}{R} + iL).$$

Taking d of both sides:

$$\frac{di}{dt} = -\frac{1}{R} \frac{dv_c}{dt} - \frac{di_L}{dt}$$

We use
$$\frac{dv_c}{dt} = \frac{ic}{c}$$
 and $\frac{di_L}{dt} = \frac{v_L}{L}$:

$$\frac{di}{dt} = -\frac{1}{R} \frac{ic}{c} - \frac{v_L}{L}$$

$$\frac{di}{dt}\Big|_{t=0^+} = -\frac{1}{RC}i_c(0^+) - \frac{v_L(0^+)}{L}$$

Returning to our circuit for $t=0^+$, we have $i_c(0^+)=i(0^+)=0A$.

Also,
$$v_L(0^+) = v_C(0^+) = igR$$
.

b) We always have
$$S_{1,2} = -\kappa \pm \sqrt{\kappa^2 - w_0^2}$$
.

We have a parallel RLC with $\alpha = \frac{1}{2RC}$.

For any simple RLC,
$$w_0^2 = \frac{1}{LC}$$
.

From the above, we use

$$5 + 5 = -2\alpha = \frac{1}{2RC} \cdot 2$$

or
$$-10k r/s - 40k r/s = \frac{-1}{R \cdot 5\mu F}$$

or
$$R = \frac{-1}{-50k \cdot 5\mu} = \frac{1}{250m} = 42$$

$$|R=452| \qquad (and x=25k/5)$$

To find L, we use

$$\dot{s}_{1} \cdot \dot{s}_{2} = \left(-\alpha + \sqrt{\kappa^{2} - \omega_{0}^{2}}\right)\left(-\alpha - \sqrt{\kappa^{2} - \omega_{0}^{2}}\right)$$

$$= \left(-\alpha\right)^{2} - \sqrt{\kappa^{2} - \omega_{0}^{2}}$$

$$= \kappa^{2} - \left(\alpha^{2} - \omega_{0}^{2}\right)$$

$$= \omega_{0}^{2}$$

$$L = \frac{1}{(-10k)(-40k)} \frac{H}{5\mu}$$

$$L = \frac{1}{2000}$$