
OPTIMIZATION NONLINEAR REGRESSION Example problem 1

Ex: An ultrasound beam of intensity I_0 is created by actuators arranged in a crescent, as shown in the figure below. The beam travels through an object (shown in green) that absorbs the beam energy as it travels in the *z* direction.

The following equation, derived from physics, describes the intensity that sensors measure as a function of distance, z, into the medium.

$$Q(z) = I_0 \frac{\alpha e^{-2\alpha z}}{A(z)}$$

where

z = distance into object

 $I_0 = initial beam intensity$

Q(z) = measured intensity at z

A(z) = beam area at z

 $\alpha = \text{coefficient of absorption for object}$

The optimization problem is to derive a value for α from measured values of intensity, $Q(z_1)$, $Q(z_2)$, $Q(z_3)$, and $Q(z_4)$, versus distance z into the object. The beam area versus distance, z, is known from geometry (plus an approximation at z_3 where the beam is focused but must have an effective area greater than zero):

$$z_1 = 1$$
, $z_2 = 2$, $z_3 = 3$, $z_4 = 4$
A(z_1) = 8, A(z_2) = 2, A(z_3) = 1, A(z_4) = 2

One approach is to find the α that minimizes the following squared error function:

$$E = \sum_{i=1}^{4} [Q(z_i) - Q(z)]^2$$