To pass the unit exam, you must be able to do the following (using books and notes):

COnCEPTUAL TOOLS	Learning Objective	Reading
	1.1 Consistently label directions of currents and polarity of potential differences in any given circuit (including independent voltage sources and independent current sources, and dependent sources).	$\begin{aligned} & \text { Chap } 1 \\ & \text { App A } \end{aligned}$
	1.2 Use the concepts of both independent and dependent voltage sources and current sources in designing and analyzing circuits.	Chap 2: Sec 2.1
	1.3 Apply Kirchhoff's voltage and current laws to obtain equations relating voltages and currents in any given circuit.	Chap 2: Sec 2.2
CIRCUITS OHM'S LAW Statement Series resistors Parallel resistors Resistor networks EXAMPLE 1 (PDF)	1.4 Calculate and/or estimate the equivalent resistance (conductance) of a combination of resistances (conductances). Use equivalent resistances (conductances) to reduce circuits.	Chap 2: Sec 2.3-2.4
	1.5 Solve linear simultaneous equations.	-
CIRCUITS KIRCHHOFF'S LAWS Solving circuits EXAMPLE 1 (PDF)	1.6 Apply Kirchhoff's and Ohm's laws to linear resistive circuits, solve for specified voltages and currents, and design circuits to given specifications, making consistency checks when appropriate. Apply Kirchhoff's and Ohm's laws qualitatively as well as quantitatively.	Chap 2: Sec 2.4-2.5
CIRCUITS OHM'S LAW Statement Series resistors Parallel resistors $\frac{\text { Resistor networks }}{\text { ExAMPLE } 1 \text { (PDF) }}$ EXAMPLE 1 (PDF)	1.7 Calculate and/or estimate the equivalent resistance (conductance) of a combination of resistances (conductances). Use equivalent resistances (conductances) to reduce circuits.	Chap 3: Sec 3.1-3.2

[^0]| CIRCUITS
 VANDIDIIIDERS
 Voltage divider
 Current divider
 Example (pdf) | | Apply voltage divider and current divider relations. | Chap 3:
 Sec 3.3-3.4 |
| :---: | :---: | :---: | :---: |
| OP-AMPS GOLDENRULES $\mathrm{V}_{+}=\mathrm{V}_{-}$ Zero input current EXAMPLE 1 (PF) EXAMPLE 2 (PDF) | | Analyze and design elementary op-amp circuits. | Chap 5 |
| CIRCUITS CONSISTENCY CHECKS | 1.10 | Make consistency checks. | - |

[^0]: * The material in this handout is based extensively on concepts developed by C. H. Durney, Professor Emeritus of the University of Utah.

