## UNIT 2 STUDY GUIDE\*



| CONCEPTUAL TOOLS                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Learning Objective                                                                                                                                                                                                                                                                                                                                                                                       | Reading                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| CIRCUITS<br>MAX POWER XFER<br>Example (pdf)                                                                                                                                                                                                                                                                                                                                                                                            | 2.1 | Apply the maximum power transfer theorem.                                                                                                                                                                                                                                                                                                                                                                | Chap 4:<br>Sec 4.12    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2 | Apply the principle of superposition.                                                                                                                                                                                                                                                                                                                                                                    | Chap 4:<br>Sec 4.13    |
| <b>RLC CIRCUITS</b> $C$ (CAPACITOR) EQUATIONS $i = C$ dv/dtSeries capacitorsParallel capacitorsInitial conditions $C = OPEN$ CIRCUITCHARGE SHARINGV SRC MODELFinal conditions open circuitEnergy storedExample 1 (pdf)Example 2 (pdf) $L$ (INDUCTOR) EQUATIONS $v = L$ di/dtSeries inductorsParallel inductorsInitial conditions $L =$ WIRECURRENT DIVISIONI SRC MODELFinal conditions wireEnergy storedExample 1 (pdf)Example 2 (pdf) | 2.3 | For a specified current through an inductance,<br>find the voltage across it, and vice versa. For<br>a specified voltage across a capacitance, find<br>the current through it, and vice versa. From<br>the voltages and currents, find energy stored<br>in inductances and capacitances. Find the<br>equivalence of inductances in series and<br>parallel and of capacitances in series and<br>parallel. | Chap 6:<br>Sec 6.1-6.3 |
| RLC CIRCUITS<br>GENERAL RC/RL SOLUTION<br>General solution<br>Time const Thev equiv<br>Solution procedure<br>Example 1 (pdf)<br>Example 2 (pdf)                                                                                                                                                                                                                                                                                        | 2.4 | Find the natural response of any circuit<br>containing just one inductance or one<br>capacitance (or one equivalent inductance or<br>one equivalent capacitance).                                                                                                                                                                                                                                        | Chap 7:<br>Sec 7.1-7.2 |
| RLC CIRCUITS   GENERAL RC/RL SOLUTION   General solution   Time const Thev equiv   Solution procedure   Example 3 (pdf)   Example 4 (pdf)                                                                                                                                                                                                                                                                                              | 2.5 | Find the step-function response of any circuit<br>containing just one inductance or one<br>capacitance (or one equivalent inductance or<br>one equivalent capacitance).                                                                                                                                                                                                                                  | Chap 7:<br>Sec 7.3     |

To pass the unit exam, you must be able to do the following (using books and notes):

<sup>\*</sup> The material in this handout is based extensively on concepts developed by C. H. Durney, Professor Emeritus of the University of Utah.

| RLC CIRCUITS<br>GENERAL RC/RL SOLUTION<br>General solution<br>Time const Thev equiv<br>Solution procedure<br>Example 5   (pdf)<br>Example 6 (pdf)<br>Example 7 (pdf)                                                                               | 2.6 | For given RC and RL circuits (containing<br>only one equivalent storage element) give<br>qualitative explanations based on the<br>interpretations that: (1) uncharged<br>capacitance looks initially like a short circuit<br>and finally like an open circuit, and (2)<br>inductance with no initial current looks<br>initially like an open circuit and finally like a<br>short circuit. | Chap 7:<br>Sec 7.4-7.5 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| RLC CIRCUITS<br>RLC CHAR ROOTS/DAMPING<br>Series<br>Parallel<br>Overdamped roots<br>Underdamped roots<br>Critically damped roots<br><u>Example (pdf)</u>                                                                                           | 2.7 | Find the roots of the characteristic equation<br>that describes any voltage or current in any<br>series or parallel RLC circuit. Determine<br>whether the response of a series or parallel<br>RLC circuit is underdamped, critically<br>damped, or overdamped.                                                                                                                            | Chap 8<br>Sec 8.1-8.2  |
| RLC CIRCUITS<br>RLC GENERAL SOLUTION<br>Initial conditions                                                                                                                                                                                         | 2.8 | Evaluate the initial conditions of series and parallel RLC circuits.                                                                                                                                                                                                                                                                                                                      | Chap 8:<br>Sec 8.3-8.4 |
| <b>RLC CIRCUITS</b> GENERAL RLC SOLUTION   Initial conditions   Damping: over,   under,   critical sol'n forms   Example 1 (pdf)   Example 2 (pdf)   Example 3 (pdf)   Example 5 (pdf)   Example 5 (pdf)   Step + Natural response   Example (PDF) | 2.9 | Evaluate the arbitrary constants in the solution for any voltage or current in an RLC circuit.                                                                                                                                                                                                                                                                                            | Chap 8:<br>Sec 8.3-8.4 |