UNIT 3 STUDY GUIDE*

CONCEPTUAL TOOLS		Learning Objective	Reading
LAPLACE TRANSFORM STEP FUNCTIONS <u>Example (pdf)</u>	3.1.	Use step functions to express functions of limited duration.	Chap 12 Sec 12.1- 12.2
LAPLACE TRANSFORM TRANSFORM PAIRS: Example (pdf)	3.2.	Find the Laplace transform of the functions of time commonly used in circuit theory.	Chap 12 Sec12.4
LAPLACE TRANSFORM IDENTITIES: Example 1 (pdf) Example 2 (pdf) Example 3 (pdf)	3.3.	Apply the operational transform identities commonly used in circuit theory, including differentiation, integration, translation in the time domain, translation in the frequency domain, and scale changing.	Chap 12 Sec 12.5- 12.6
LAPLACE TRANSFORM INVERSE TRANSFORM Partial fractions Example 1 (PDF) Example 2 (PDF)	3.4.	Find inverse Laplace transforms of rational functions of <i>s</i> , including those with complex and repeated roots.	Chap 12 Sec 12.7
LAPLACE TRANSFORM POLES AND ZEROS Example 1 (pdf) Example 2 (pdf)	3.5.	Plot the poles and zeros of a rational function of <i>s</i> in the <i>s</i> plane.	Chap 12 Sec 12.8
LAPLACE TRANSFORM INITIAL/FINAL VALUE THMS Example (PDF)	3.6.	Apply the initial- and final-value theorems.	Chap 12 Sec 12.9
LAPLACE TRANSFORM CIRCUITS s-domain circuit elements Example (pdf)	3.7.	Transform circuits (including initial conditions) to the s domain.	Chap 13 Sec13.1
LAPLACE TRANSFORM CIRCUITS s-domain solutions <u>EXAMPLE (PDF)</u>	3.8.	Apply Kirchhoff's laws and techniques used for resistive circuits to circuits in the <i>s</i> domain, including impedance relationships, super-position, and source transformations.	Chap 13 Sec 13.2
LAPLACE TRANSFORM CIRCUITS <i>t</i> -domain waveforms <u>Example (PDF)</u>	3.9.	Obtain expressions for specified voltages and currents in circuits in the <i>s</i> domain, and transform them to the time domain.	Chap 13 Sec 13.3

To pass the unit exam, you must be able to do the following (using books and notes):

^{*} The material in this handout is based extensively on concepts developed by C. H. Durney, Professor Emeritus of the University of Utah.

IMPULSE FUNCTION δ(t) DEFINITION IMPULSE IDENTITY CONVOLVE LAPLACE TRANSFORM CIRCUITS Impulse function Example (PDF)	3.10. Analyze and design circuits that include impulse functions.	Chap 12 Sec 12.3 Chap 13 Sec 13.8
	3.11. Make consistency checks in <i>s</i> domain.	-