UNIT 1 STUDY GUIDE*

To pass the unit exam, you must be able to do the following (using books and notes):

COnceptual Tools	Learning Objective	Reading
RLC CIRCUITS RLC CHAR ROOTS/DAMPING Series Parallel Overdamped roots Underdamped roots Critically damped roots <u>Example (pdf)</u>	1.1. Find the roots of the characteristic equation that describes any voltage or current in any series or parallel RLC circuit. Determine whether the response of a series or parallel RLC circuit is underdamped, critically damped, or overdamped.	Chap 8 Sec 8.1-8.2
RLC CIRCUITS RLC GENERAL SOLUTION Initial conditions	1.2. Evaluate the initial conditions of series and parallel RLC circuits.	Chap 8: Sec 8.3-8.4
RLC CIRCUITS GENERAL RLC SOLUTION Initial conditions Damping: over, under, critical sol'n forms Example 1 (pdf) Example 2 (pdf) Example 3 (pdf) Example 4 (pdf) Example 5 (pdf) SUPERPOSITION CIRCUITS Step + Natural response EXAMPLE (PDF)	1.3. Evaluate the arbitrary constants in the solution for any voltage or current in an RLC circuit.	Chap 8: Sec 8.3-8.4
STATE-SPACE METHOD CIRCUITS Initial conditions EXAMPLE 1 (PDF) EXAMPLE 2	1.4. Find and evaluate the state vector x at t = 0+ for a circuit with an arbitrary number of R's, L's, and C's; that is, evaluate the initial conditions of the state variables.	-
STATE-SPACE METHOD CIRCUITS State-space variables Equations Example 1 (PDF) Example 2 Matlab [®] TUTORIAL (PDF)	1.5. Write the first-order coupled differential equations for circuits in the form $d\mathbf{x}/dt = f(\mathbf{x}, t)$ where x is the state vector and t is time.	-

^{*} The material in this handout is based extensively on concepts developed by C. H. Durney, Professor Emeritus of the University of Utah.