ECE 2260 N. Cotter

UNIT 3 STUDY GUIDE*

To pass the unit exam, you must be able to do the following (using books and notes):

STEP FUNCTIONS Example (pdf) LAPLACE TRANSFORM TRANSFORM PAIRS: Example (pdf)	3.1.	Use step functions to express functions of limited duration.	Chap 12
TRANSFORM PAIRS: Example (pdf) LAPLACE TRANSFORM IDENTITIES: Example 1 (pdf)	2 2		Sec 12.1- 12.2
IDENTITIES: Example 1 (pdf)	3.2.	Find the Laplace transform of the functions of time commonly used in circuit theory.	Chap 12 Sec 12.4
Example 3 (pdf)	3.3.	Apply the operational transform identities commonly used in circuit theory, including differentiation, integration, translation in the time domain, translation in the frequency domain, and scale changing.	Chap 12 Sec 12.5- 12.6
LAPLACE TRANSFORM INVERSE TRANSFORM Partial fractions EXAMPLE 1 (PDF) EXAMPLE 2 (PDF)	3.4.	Find inverse Laplace transforms of rational functions of s , including those with complex and repeated roots.	Chap 12 Sec 12.7
POLES AND ZEROS Example 1 (pdf) Example 2 (pdf)	3.5.	Plot the poles and zeros of a rational function of <i>s</i> in the <i>s</i> plane.	Chap 12 Sec 12.8
LAPLACE TRANSFORM INITIAL/FINAL VALUE THMS Example (pdf)	3.6.	Apply the initial- and final-value theorems.	Chap 12 Sec 12.9
LAPLACE TRANSFORM CIRCUITS s-domain circuit elements EXAMPLE (PDF)	3.7.	Transform circuits (including initial conditions) to the s domain.	Chap 13 Sec 13.1
	3.8.	Apply Kirchhoff's laws and techniques used for resistive circuits to circuits in the <i>s</i> domain, including impedance relationships, superposition, and source transformations.	Chap 13 Sec 13.2
CIRCUITS t-domain waveforms EXAMPLE (PDF)	3.9.	Obtain expressions for specified voltages and currents in circuits in the <i>s</i> domain, and transform them to the time domain.	-
DEFINITION IMPULSE IDENTITY CONVOLVE LAPLACE TRANSFORM CIRCUITS Impulse function EXAMPLE (PDF)		Analyze and design circuits that include impulse functions. Make consistency checks in s domain.	Chap 12 Sec 12.3 Chap 13 Sec 13.8

_

^{*} The material in this handout is based extensively on concepts developed by C. H. Durney, Professor Emeritus of the University of Utah.