Problem 1 (20 pts)

You need to transmit data over an optical link of 100 km with fiber loss of 0.2 dB/km. The link has five splices with 0.05 dB loss per splice and two connectors with 0.2 dB per connector. The receiver sensitivity is 20 μW. Express the minimum transmitter power in both mW and dBm.

You can express the loss budget of the system (in dB) using

\[P_{tr, dBm} - P_{rec, dBm} = -\gamma L + L_{fixed}, \]

where L_{fixed} represents the fixed losses in the system (i.e. losses that do not depend upon fiber length). Remember that $\gamma = -0.2 \text{ dB/km} < 0$ for loss.

From the problem statement, the fixed losses add up to

\[L_{fixed} = 2 \times L_{connector} + 5 \times L_{splice} = 2 \times 0.2 \text{ dB} + 5 \times 0.05 \text{ dB} = 0.65 \text{ dB}, \]

and the fiber loss

\[-\gamma L = 0.2 \text{ dB/km} \times 100 \text{ km} = 20 \text{ dB}. \]

Now, we need to express the receiver sensitivity in dBm, which we do by

\[P_{rec, dBm} = 10 \log \left(\frac{20 \ \mu W}{1 \text{ mW}} \right) = -17.0 \text{ dBm}. \]

Solving for the transmitter power, we get

\[P_{tr, dBm} = P_{rec, dBm} - \gamma L + L_{fixed} = -17.0 \text{ dBm} + 20 \text{ dB} + 0.65 \text{ dB} = 3.66 \text{ dBm}. \]

Expressed in mW, $P_{tr} = 2.32 \text{ mW}$.
Problem 2 (40 pts)

Consider an optical fiber of 50 μm diameter, core index \(n_1 = 1.5 \), and cladding index \(n_2 = 1.49 \) for operation at \(\lambda = 1.31 \) μm.

a) What is the numerical aperture (NA) of this fiber?

The numerical aperture is defined as

\[
NA \equiv \sin \theta = \sqrt{n_1^2 - n_2^2}.
\]

Plugging in the numbers, we get

\[
NA = \sqrt{1.5^2 - 1.49^2} = 0.173.
\]

b) How many modes does this fiber support?

We first have to calculate the V number for the fiber

\[
V = \frac{2\pi a}{\lambda} \sqrt{n_1^2 - n_2^2} = \frac{2\pi a}{\lambda} N.A.
\]

Note that \(2a \) is the diameter. Plugging in the numbers, we get

\[
V = \frac{\pi \times 50 \, \mu m}{1.31 \, \mu m} \times 0.173 = 20.7.
\]

Since \(V > 10 \), we can use \(V^2/2 \) for the number of modes, which comes out to be 215.

c) What would be the pulse spread due to modal dispersion over a distance of 10 km?

Pulse spread due to modal dispersion is described by

\[
\Delta \tau_{\text{modal}} = \frac{n_1 L}{c} \Delta,
\]

where

\[
\Delta = \frac{n_1 - n_2}{n_1} = \frac{1.5 - 1.49}{1.5} = 6.67 \times 10^{-3}.
\]

Now, plugging in the rest of the numbers,

\[
\Delta \tau_{\text{modal}} = \frac{1.5 \times 10 \, \text{km}}{3 \times 10^5 \, \text{km/sec}} \times 6.67 \times 10^{-3} = 333 \, \text{ns}.
\]

d) What would the maximum fiber diameter need to be for the fiber to operate with a single mode?

For a single-mode fiber, we must have the condition that \(V \leq 2.405 \). Solving for \(2a \),

\[
V = \frac{2\pi a}{\lambda} NA = 2.405 \Rightarrow 2a = \frac{2.405 \lambda}{\pi NA} = \frac{2.405 \times 1.31}{\pi \times 0.173} \, \mu m = 5.80 \, \mu m.
\]
Problem 3 (40 pts)

For an optical communications system, the transmitter and receiver operate at 2.5 Gb/sec NRZ (B_{NRZ}) at a central wavelength of 1550 nm, using a laser with a spectral linewidth of $\Delta \lambda = 0.05$ nm. The fiber has a dispersion parameter of $M = -20$ ps/nm-km.

a) Calculate the pulse spread per unit distance (ps/km).

The pulse spread due to chromatic dispersion is written

$$\Delta \tau_{\text{chrom}} = -M \times L \times \Delta \lambda \Rightarrow \Delta \left(\frac{\tau}{L} \right)_{\text{chrom}} = -M \times \Delta \lambda = 20 \text{ ps/nm} \cdot \text{km} \times 0.05 \text{ nm} = 1 \text{ ps/km}.$$

b) What is the maximum length of fiber that allows the stated system bit rate?

We have to go back to the expression for dispersion-limited bit-rate

$$B_{NRZ} = 2 \times f_{3dB,\text{elec}} = \frac{0.7}{\Delta \tau} = \frac{0.7}{\Delta (\tau/L)_{\text{chrom}} \times L}.$$

Now, we solve for the unknown L,

$$L = \frac{0.7}{\Delta (\tau/L)_{\text{chrom}} \times B_{NRZ}} = \frac{0.7}{1 \text{ ps/km} \times 2.5 \text{ Gb/sec}} = 280 \text{ km}.$$

c) If the system were to operate at 10 Gb/sec NRZ, then what would be the required optical bandwidth $f_{3dB,\text{optical}}$? Hint: you don’t need fiber length or $\Delta \lambda$ for this calculation.

We have to go back to the relationships among the different bandwidths. We know that

$$f_{3dB,\text{electrical}} = \frac{\sqrt{2}}{2} \times f_{3dB,\text{optical}}$$

and that

$$B_{NRZ} = 2 \times f_{3dB,\text{electrical}} = \sqrt{2} f_{3dB,\text{optical}},$$

so that

$$f_{3dB,\text{optical}} = \frac{B_{NRZ}}{\sqrt{2}} = 7.07 \text{ GHz}.$$

d) Given the optical bandwidth of part c), then what would be the optical frequency spread in terms of $\Delta \lambda$? What would be the maximum fiber length?

The 3 dB optical bandwidth is just $\Delta \nu$, and we can use the relationship

$$\frac{\Delta \nu}{\nu} = \frac{\Delta \lambda}{\lambda}$$

to solve for $\Delta \lambda$. Doing so, we get

$$\Delta \lambda = \frac{\Delta \nu}{\nu} \times \lambda = \frac{7.07 \text{ GHz}}{193.5 \text{ THz}} \times 1550 \text{ nm} = 0.057 \text{ nm}.$$
We have to calculate the new wavelength spread, which is done by

\[\Delta \lambda^2 = \Delta \lambda^2_{\text{source}} + \Delta \lambda^2_{\text{modulation}} = (0.05 \text{ nm})^2 + (0.057 \text{ nm})^2 \Rightarrow \Delta \lambda = 0.076 \text{ nm}. \]

Using this new wavelength spread, we can recalculate the dispersion limited distance

\[
L = \frac{0.7}{\Delta (\tau/L)_{\text{chrom}} \times B_{\text{NRZ}}} = \frac{0.7}{20 \text{ ps/nm} \cdot \text{km} \times 0.076 \text{ nm} \times 10 \text{ Gb/sec}} = 46 \text{ km}.
\]