CHAPTER 8
CONCLUSIONS

8.1 General Conclusions
In this book, we have attempted to give, at a fairly advanced level of rigor, a unified treatment of current methodologies for the design and analysis of adaptive control algorithms.

First, we presented several schemes for the adaptive identification and control of linear time invariant systems. An output error scheme, an input error scheme, and an indirect scheme were derived in a unified framework. While all the schemes were shown to be globally stable, the assumptions that went into the derivation of the schemes were quite different. For instance, the input error adaptive control scheme did not require a strictly positive real (SPR) condition for the reference model. This also had implications for the transient behavior of the adaptive systems.

A major goal of this book has been the presentation of a number of recent techniques for analyzing the stability, parameter convergence and robustness of the complicated nonlinear dynamics inherent in the adaptive algorithms. For the stability proofs, we presented a sequence of lemmas drawn from the literature on input-output L_p stability. For the parameter convergence proofs, we used results from generalized harmonic analysis, and extracted frequency-domain conditions. For the study of robustness, we exploited Lyapunov and averaging methods. We feel that a complete mastery of these techniques will lay the groundwork for future studies of adaptive systems.

Section 8.1
General Conclusions

While we did not deal explicitly with discrete time systems, our presentation of the continuous time results may be transcribed to the discrete time case with not much difficulty. The operator relationships that were used for continuous time systems (L_p spaces) also hold true for discrete time systems (l_p spaces). In fact, many derivations may be simplified in the discrete time case because continuity conditions (such as the regularity of signals) are then automatically satisfied.

Averaging techniques have proved extremely useful and it is likely that important developments will still follow from their use. It is interesting to note that the two-time scale approximation was not only fundamental to the application of averaging methods to convergence (Chapter 4) and to robustness (Chapter 5), but was also underlying in the proofs of exponential convergence (Chapter 2), and global stability (Chapter 3). This highlights the separation between adaptation and control, and makes the connections between direct and indirect adaptive control more obvious.

Methods for the analysis of adaptive systems were a focal point of this book. As was observed in Chapter 5, algorithms that are stable for some inputs may be unstable for others. While simulations are extremely valuable to illustrate a point, they are useless to prove any global behavior of the adaptive algorithm. This is a crucial consequence of the nonlinearity of the adaptive systems, that makes rigorous analysis techniques essential to progress in the area.

8.2 Future Research
Adaptive control is a very active area of research, and there is a great deal more to be done. The area of robustness is essential to successful applications, and since the work of Rohrs et al, it has been understood that the questions of robustness for adaptive systems are very different from the same questions for linear time-invariant systems. This is due in great part to the dual control aspect of adaptive systems: the reference input plays a role in determining the convergence and robustness by providing excitation to the identification loop. A major problem remains to quantify robustness for adaptive systems. Current theory does not allow for the comparison of the robustness of different adaptive systems, and the relation to non-adaptive robustness concepts. Closer connections will probably emerge from the application of averaging methods, and from the frequency-domain results that they lead to.

Besides these fundamental questions of analysis, much remains to be done to precisely define design methodologies for robust adaptive systems and in particular a better understanding of which algorithms are more robust. Indeed, although the adaptive systems discussed in this book have identical stability properties in the ideal case, there is
Conclusions

Chapter 8

evidence that their behavior is drastically different in the presence of unmodeled dynamics. A better understanding of which algorithms are more robust will also help in deriving guidelines for the improved design of robust algorithms.

While we have extensively discussed the analysis of adaptive systems, we also feel that great strides in this area will come from experiences in implementing the algorithms on several classes of systems. With the advent of microprocessors, and of today's multi-processor environments, complicated algorithms can now be implemented at very high sample rates. The years to come will see a proliferation of techniques to effectively map these adaptive algorithms onto multiprocessor control architectures. There is a great deal of excitement in the control community at large over the emergence of such custom multiprocessor control architectures as CONDOR (Narasimhan et al [1988]) and NYMPH (Chen et al [1986]). In turn, such advances will make it possible to exploit adaptive techniques on high bandwidth systems such as flexible space structures, aircraft flight control systems, light weight robot manipulators, and the like. While past successes of adaptive control have been on systems of rather low bandwidth and benign dynamics, the future years are going to be ones of experimentation on more challenging systems.

Two other areas that promise explosive growth in the years to come are adaptive control of multi-input multi-output (MIMO) systems, and adaptive control of nonlinear systems, explicitly those linearizable by state feedback. We presented in this book what we feel is the tip of the iceberg in these areas. More needs to be understood about the sort of prior information needed for MIMO adaptive systems. Conversely, the incorporation of various forms of prior knowledge into black-box models of MIMO systems also needs to be studied. Adaptive control for MIMO systems is especially attractive because the traditional and heuristic techniques for SISO systems quickly fall apart when strong cross-couplings appear. Note also that research in the identification of MIMO systems is also relevant to nonadaptive algorithms, which are largely dependent on the knowledge of a process model, and of its uncertainty. One may hope that the recently introduced averaging techniques will help to better connect the frequency-domain properties of adaptive and nonadaptive systems.

A very large class of nonlinear systems is explicitly linearizable by state feedback. The chief difficulty with implementing the linearizing control law is the imprecise knowledge of the nonlinear functions in the dynamics, some of which are often specified in table look-up form. Adaptation then has a role in helping identify the nonlinear functions on-line to obtain asymptotically the correct linearizing control law. This

Section 8.2 Future Research

approach was discussed in this book, but it is still in its early development. However, we have found it valuable in the implementation of an adaptive controller for an industrial robot (the Adept-I) and are currently working on a flight control system for a vertical take-off and landing aircraft (the Harrier).

In addition to all these exciting new directions of research in adaptive control, most of which are logical extensions and outgrowths of the developments presented in the previous chapters, we now present a few other new vistas which are not as obvious extensions.

A "Universal" Theory of Adaptive Control

While all the adaptive control algorithms developed in this book required assumptions on the plant—in the single-input single-output case, the order of the plant, the relative degree of the plant, the sign of the high-frequency gain, and the minimum phase property of the plant—it is interesting to ask if these assumptions are a minimal set of assumptions. Indeed, that these assumptions can be relaxed was established by Morse [1985, 1987], Mudgett and Morse [1985], Nussbaum [1983], and Martenson [1985] among others. Chief under the assumptions that could be relaxed was the one on the sign of the high-frequency gain.

There is a simple instance of these results which is in some sense representative of the whole family: consider the problem of adaptively stabilizing a first order linear plant of relative degree 1 with unknown gain k_p, i.e.,

$$
\dot{y}_p = -a_p y_p + k_p u
$$

(8.2.1)

with k_p different from zero but otherwise unknown, and a_p unknown. If the sign of k_p is known and assumed positive, the adaptive control law

$$
u = d_0(t) y_p
$$

(8.2.2)

and

$$
d_0 = -\dot{y}_p^2
$$

(8.2.3)

can be shown to yield $y_p \to 0$ as $t \to \infty$. Nussbaum [1983] proposed that if the sign of k_p is unknown, the control law (8.2.2) can be replaced by

$$
u = d_0^2(t) \cos (d_0(t)) y_p
$$

(8.2.4)

with (8.2.3) as before. He then showed that $y_p \to 0$ as $t \to \infty$, with $d_0(t)$ remaining bounded. Heuristically, the feedback gain $d_0^2(t) \cos (d_0)$ of (8.2.4) alternates in sign ("searches for the correct sign") as d_0 is
Conclusions

While the transient behavior of the algorithm (8.2.3), (8.2.4) is poor, the scheme has stimulated a great deal of interest to derive adaptive control schemes requiring a minimal set of assumptions on the plant (universal controllers). A further objective is to develop a unified framework which would subsume all the algorithms presented thus far. Adaptive systems may be seen as the interconnection of a plant, a parameterized controller, and adaptation law or tuner (cf. Morse [1988]). The parameterized controller is assumed to control the process, and the tuner assumed to tune the controller. Tuning is said to have taken place when a suitable tuning error goes to zero. The goal of a universal theory is to give a minimal set of assumptions on the process, the parameterized controller, and the tuner to guarantee global stability and asymptotic performance of the closed loop system. Further, the assumptions are to contain as special cases the algorithms presented thus far. Such a theory would be extremely valuable from a conceptual and intellectual standpoint.

Rule-Based, Expert and Learning Control Systems

As the discussions in Chapter 5 indicated, there is a great deal of work needed to implement a given adaptive algorithm, involving the use of heuristics, prior knowledge, and expertise about the system being controlled (such as the amount of noise, the order of the plant, the number of unknown parameters, the bandwidth of the parameters’ variation...). This may be coded as several logic steps or rules, around the adaptive control algorithm. The resulting composite algorithm is often referred to as a rule-based control law, with the adaptation scheme being one of the rules. The design and evaluation of such composite systems is still an open area of research for nonadaptive as well as adaptive systems, though adaptive control algorithms form an especially attractive area of application.

One can conceive of a more complex scenario, in which the plant to be controlled cannot be easily modeled, either as a linear or nonlinear system because of the complexity of the physical processes involved. A controller then has to be built by codifying systematically into rules the experience gained from operating the system (this is referred to as querying and representation of expert knowledge). The rules then serve as a model of the plant from which the controller is constructed as a rule-based system, i.e. a conjunction of several logic steps and control algorithms. Such a composite design process is called a rule-based expert controller design. The sophistication and performance of the controller is dependent on the amount of detail in the model furnished by the

Section 8.2

Future Research

expert knowledge. Adaptation and learning in this framework consists in refining the rule-based model on the experience gained during the course of operation of the system.

While this framework is extremely attractive from a practical point of view, it is fair to say that no more than a few case studies of expert control have been implemented, and state of the art in learning for rule-based models is rudimentary. In the context of adaptive control, a very interesting study is found in Astrom et al. [1986]. Adapted from their work is Figure 8.1, illustrating the structure of an expert control system using an adaptive algorithm.

![Expert Adaptive Control System](image)

The rule-based system decides, based on the level of excitation, which of a library of identification algorithms to use and, if necessary, to inject new excitation. It also decides which of a family of control laws to use and communicates its inferencing procedures to the operator. A supervisory system provides alarms and interrupts.

Adaptation, Learning, Connectionism and all those things...

While the topics in the title have the same general philosophical goals, namely, the understanding, modeling and control of a given process, the fields of identification and adaptive control have made the largest strides in becoming a design methodology by limiting their universe of discourse to a small (but practically meaningful) class of systems with linear or linearizable dynamics, and a finite dimensional state-space. Learning has, however, been merely parameter updating.
The goals of connectionism and neural networks (see for example Denker [1986] and the parallel distributed processing models) have been far more lofty: the universe of discourse includes human systems and the learning mimics our own human development. A few applications of this work have been made to problems of speech recognition, image recognition, associative memory storage elements and the like, and it is interesting to note that the 'learning' algorithms implemented in the successful algorithms are remarkably reminiscent of the gradient type and least-squares type of update laws studied in this book. We feel, consequently, that in the years to come, there will be a confluence of the theories and techniques for learning.

APPENDIX

Proof of Lemma 1.4.2
Let

\[r(t) = \int_0^t a(\tau) x(\tau) d\tau \] \hspace{1cm} (A1.4.1)

so that, by assumption

\[r(t) = a(t) x(t) \leq a(t) r(t) + a(t) u(t) \] \hspace{1cm} (A1.4.2)

that is, for some positive \(s(t) \)

\[r(t) - a(t) r(t) - a(t) u(t) + s(t) = 0 \] \hspace{1cm} (A1.4.3)

Solving the differential equation with \(r(0) = 0 \)

\[r(t) = \int_0^t e^{s(\tau)} (a(\tau) u(\tau) - s(\tau)) d\tau \] \hspace{1cm} (A1.4.4)

Since \(\exp(.) \) and \(s(.) \) are positive functions

\[r(t) \leq \int_0^t e^{s(\tau)} a(\tau) u(\tau) d\tau \] \hspace{1cm} (A1.4.5)

By assumption \(x(t) \leq r(t) + u(t) \) so that (1.4.11) follows. Inequality (1.4.12) is obtained by integrating (1.4.11) by parts. \(\square \)
Proof of Lemma 2.5.2
We consider the system
\[
\dot{x}(t) = A(t)x(t) \\
y(t) = C(t)x(t)
\] (A2.5.1)
and the system under output injection
\[
\dot{w}(t) = \left[A(t) + K(t)C(t) \right] w(t) \\
z(t) = C(t)w(t)
\] (A2.5.2)
where \(x, w \in \mathbb{R}^n \), \(A \in \mathbb{R}^{n \times n} \), \(C \in \mathbb{R}^{m \times n} \), \(K \in \mathbb{R}^{n \times m} \), and \(y, z \in \mathbb{R}^m \).

It is sufficient to derive equations giving \(\beta_1, \beta_2, \beta_3 \).

Derivation of \(\beta_1 \)
Consider the trajectories \(x(\tau) \) and \(w(\tau) \), corresponding to systems (A2.5.1) and (A2.5.2) respectively, with identical initial conditions \(x(t_0) = w(t_0) \). Then
\[
w(\tau) - x(\tau) = \int_0^\tau \Phi(\tau, \sigma)K(\sigma)C(\sigma)w(\sigma) d\sigma
\]
(A2.5.3)
Let \(e(\sigma) = K(\sigma)C(\sigma)w(\sigma) \) so that
\[
|C(\tau)(w(\tau) - x(\tau))|^2 = \left[\int_0^\tau |C(\tau)\Phi(\tau, \sigma)e(\sigma)|K(\sigma)||C(\sigma)w(\sigma)| \right]^2 \\
\leq \left[\int_0^\tau |C(\tau)\Phi(\tau, \sigma)e(\sigma)||K(\sigma)||C(\sigma)w(\sigma)| \right]^2 \\
= \left[\int_0^\tau |C(\tau)\Phi(\tau, \sigma)e(\sigma)||K(\sigma)||C(\sigma)w(\sigma)| \right]^2 \\
\geq \left(\int_0^\tau |C(\tau)\Phi(\tau, \sigma)e(\sigma)| \right)^2 \frac{1}{2} \\
\leq \left[\int_0^\tau |C(\tau)\Phi(\tau, \sigma)e(\sigma)| \right]^2 \frac{1}{2} \\
\leq \left[\int_0^\tau |C(\tau)\Phi(\tau, \sigma)e(\sigma)| \right]^2 \frac{1}{2} \\
\leq \left[\int_0^\tau |C(\tau)\Phi(\tau, \sigma)e(\sigma)| \right]^2 \frac{1}{2}
\]
(A2.5.4)
using the definition of the induced norm and Schwartz inequality. On the other hand, using the triangular inequality
\[
\left[\int_{t_0}^{t_0 + \delta} |C(\tau)(w(\tau) - x(\tau))|^2 d\tau \right]^2 \\
\geq \left[\int_{t_0}^{t_0 + \delta} |C(\tau)x(\tau)|^2 d\tau \right]^2
\]
(A2.5.5)
so that, using (A2.5.4), and the UCO of the original system
\[
\left[\int_{t_0}^{t_0 + \delta} |C(\tau)w(\tau)|^2 d\tau \right]^2 \\
\geq \left[\int_{t_0}^{t_0 + \delta} |C(\tau)x(\tau)|^2 d\tau \right]^2
\]
(A2.5.6)
Changing the order of integration, the integral in the last parenthesis becomes
\[
\left[\int_{t_0}^{t_0 + \delta} K(\tau)K(\sigma)e(\sigma)|C(\tau)\Phi(\tau, \sigma)e(\sigma)| \right]^2 d\tau d\sigma
\]
(A2.5.7)
Note that \(t_0 + \delta - \sigma \leq \delta_0 \), \(|e(\sigma)| = 1 \), while \(\Phi(\tau, \sigma)e(\sigma) \) is the solution of system (A2.5.1) starting at \(e(\tau) \). Therefore, using the UCO property on the original system, and the condition on \(K(\cdot) \), (A2.5.7) becomes
\[
\left[\int_{t_0}^{t_0 + \delta} K(\tau)K(\sigma)e(\sigma)|C(\tau)\Phi(\tau, \sigma)e(\sigma)| \right]^2 d\tau d\sigma \leq k_0 \beta_2
\]
(A2.5.8)
Inequality (2.5.7) follows directly from (A2.5.6) and (A2.5.8).

Derivation of \(\beta_2 \)
We use a similar procedure, using (A2.5.4)
\[
|C(\tau)w(\tau)|^2 \leq |C(\tau)x(\tau)|^2
\]
\[+ \left| \int_t^{t_0 + \delta} \left(C(\tau) \Phi(\tau, \sigma) K(\sigma) C(\sigma) w(\sigma) d\sigma \right) \right|^2 \]

\[\leq \left| C(t) x(t) \right|^2 \]

\[+ \int_{t_0}^{t_0 + \delta} \int_{t_0}^{t} \left| C(\tau) \Phi(\tau, \sigma) w(\sigma) \right|^2 \left| C(\tau) \Phi(\tau, \sigma) e(\sigma) \right|^2 \left\| K(\sigma) \right\|^2 d\sigma d\tau \]

(A2.5.9)

and, for all \(t \leq t_0 + \delta \)

\[\int_{t_0}^{t} \left| C(\tau) w(\tau) \right|^2 d\tau \leq \int_{t_0}^{t_0 + \delta} \left| C(\tau) x(\tau) \right|^2 d\tau + \int_{t_0 + \delta}^{t} \left| C(\tau) w(\tau) \right|^2 d\tau \]

(A2.5.10)

\[\exp \left(\int_{t_0}^{t} \left| C(\tau) \Phi(\tau, \sigma) e(\sigma) \right|^2 \left\| K(\sigma) \right\|^2 d\sigma d\tau \right) \]

(A2.5.11)

for all \(t \), and in particular for \(t = t_0 + \delta \).

The integral in the exponential can be transformed, by changing the order of integration, as in (A2.5.8). Inequality (2.5.8) follows directly from (A2.5.8) and (A2.5.11).

Proof of Lemma 2.6.6

We wish to prove that for some \(\delta, \alpha_1, \alpha_2 > 0 \), and for all \(x \) with \(|x| = 1 \)

\[\alpha_2 \geq \int_{t_0}^{t_0 + \delta} \left(w^T + e^T \right) x \right|^2 d\tau \geq \alpha_1 \]

for all \(t_0 \geq 0 \) (A2.6.1)

By assumption, \(e \in L_2 \), so that

\[\int_0^\infty (e^T x)^2 d\tau \leq m \]

for some \(m \geq 0 \).

Since \(w \) is PE, there exist \(\sigma, \beta_1, \beta_2 > 0 \) such that

\[\beta_2 \geq \int_{t_0}^{t_0 + \delta} (w^T x)^2 d\tau \geq \beta_1 \]

for all \(t_0 \geq 0 \) (A2.6.2)

Let \(\delta \geq \sigma \left(1 + \frac{m}{\beta_1} \right) \), \(\alpha_1 = \beta_1 \), \(\alpha_2 = m + \beta_2 \left(1 + \frac{m}{\beta_1} \right) \) so that

\[\int_{t_0}^{t_0 + \delta} \left(w^T + e^T \right) x \right|^2 d\tau \geq \int_{t_0}^{t_0 + \delta} (w^T x)^2 d\tau - \int_{t_0}^{t_0 + \delta} (e^T x)^2 d\tau \]

\[\geq \beta_1 \left[1 + \frac{m}{\beta_1} \right] - m = \alpha_1 \]

(A2.6.3)

and

\[\int_{t_0}^{t_0 + \delta} \left(w^T + e^T \right) x \right|^2 d\tau \leq \int_{t_0}^{t_0 + \delta} (w^T x)^2 d\tau + \int_{t_0}^{t_0 + \delta} (e^T x)^2 d\tau \]

\[\leq \beta_2 \left[1 + \frac{m}{\beta_1} \right] + m = \alpha_2 \]

(A2.6.4)

\[\square \]

Proof of Lemma 2.6.7

We wish to prove that for some \(\delta, \alpha_1, \alpha_2 > 0 \), and for all \(x \) with \(|x| = 1 \)

\[\alpha_2 \geq \int_{t_0}^{t_0 + \delta} \left(\tilde{H} (w^T) x \right)^2 d\tau \geq \alpha_1 \]

for all \(t_0 \geq 0 \) (A2.6.5)

Denote \(u = w^T x \) and \(y = \tilde{H} (u) = \tilde{H} (w^T) x = \tilde{H} (w^T) x \) (where the last inequality is true because \(x \) does not depend on \(t \)). We thus wish to show that

\[\alpha_2 \geq \int_{t_0}^{t_0 + \delta} \left(y^T (x) \right)^2 d\tau \geq \alpha_1 \]

(A2.6.6)

Since \(w \) is PE, there exists \(\sigma, \beta_1, \beta_2 > 0 \) such that
\[\beta_2 \geq \int_{t_0}^{t_0+\delta} u^2(\tau) d\tau \geq \beta_1 \quad \text{for all } t_0 \geq 0 \quad (A2.6.7) \]

In this form, the problem appears on the relationship between truncated \(L_2 \) norms of the input and output of a stable, minimum phase LTI system. Similar problems are addressed in Section 3.6, and we will therefore use results from lemmas in that section.

Let \(\delta = m\sigma \), where \(m \) is an integer to be defined later. Since \(u \) is bounded, and \(y = \hat{H}(u) \), it follows that \(y \) is bounded (lemma 3.6.1) and the upper bound in (A2.6.6) is satisfied. The lower bound is obtained now, by inverting \(\hat{H} \) in a similar way as is used in the proof of lemma 3.6.2. We let

\[\hat{z}(s) = \frac{a'}{(s+a)^\gamma} \hat{u}(s) \quad (A2.6.8) \]

where \(a > 0 \) will be defined later, and \(r \) is the relative degree of \(\hat{H}(s) \). Thus

\[\hat{y}(s) = \frac{(s+a)^\gamma}{a'} \hat{H}(s) \hat{z}(s) \quad (A2.6.9) \]

The transfer function from \(\hat{z}(s) \) to \(\hat{y}(s) \) has relative degree 0. Being minimum phase, it has a proper and stable inverse. By lemma 3.6.1, there exist \(k_1, k_2 \geq 0 \) such that

\[\int_{t_0}^{t_0+\delta} z^2(\tau) d\tau \leq k_1 \int_{t_0}^{t_0+\delta} y^2(\tau) d\tau + k_2 \quad (A2.6.10) \]

Since \(\hat{u} \) is bounded

\[\int_{t_0}^{t_0+\delta} u^2(\tau) d\tau \leq k_3 \delta \quad (A2.6.11) \]

for some \(k_3 \geq 0 \). Using the results in the proof of lemma 3.6.2 ((A3.6.14)), we can also show that, with the properties of the transfer function \(\frac{a'}{(s+a)^\gamma} \), we can also show that, with the properties of the transfer function \(a' \),

\[\int_{t_0}^{t_0+\delta} u^2(\tau) d\tau \leq \int_{t_0}^{t_0+\delta} z^2(\tau) d\tau + \frac{r}{a} k_3 \delta + k_4 \quad (A2.6.12) \]

where \(k_4 \) is another constant due to initial conditions. It follows that

\[\int_{t_0}^{t_0+\delta} u^2(\tau) d\tau \geq \frac{1}{k_1} \left[\int_{t_0}^{t_0+\delta} u^2(\tau) d\tau - \frac{r}{a} k_3 \delta - k_2 - k_4 \right] \]

\[\geq \frac{1}{k_1} \left[m(\beta_1 - \frac{r}{a} k_3 \sigma) - k_2 - k_4 \right] \quad (A2.6.13) \]

Note that \(r/a \) is arbitrary, and although \(k_1 \) depends on \(r/a \), the constants \(\beta_1, k_3 \), and \(\sigma \) do not. Consequently, we can let \(r/a \) sufficiently small that \(\beta_1 - (r/a) k_3 \sigma \geq \beta_1/2 \). We can also let \(m \) be sufficiently large that \(m\beta_1/2 - k_2 - k_4 \geq \beta_1 \). Then the lower bound in (A2.6.6) is satisfied with

\[\alpha_1 = \frac{\beta_1}{k_1} \quad (A2.6.14) \]

\[\Box \]

Proof of Lemma 3.6.2

The proof of lemma 3.6.2 relies on the auxiliary lemma presented hereafter.

Auxiliary Lemma

Consider the transfer function

\[\tilde{K}(s) = \frac{a'}{(s+a)^\gamma} \quad a > 0 \quad (A3.6.1) \]

where \(r \) is a positive integer.

Let \(k(t) \) be the corresponding impulse response and define

\[g(t-\tau) = \int_{t-\tau}^{\infty} k(\sigma) d\sigma = \int_{t-\tau}^{\infty} k(t-\sigma) d\sigma \quad t-\tau \geq 0 \quad (A3.6.2) \]

Then

\[k(t) = \frac{a'}{(r-1)!} (t-1)^{-1} e^{-at} \quad t \geq 0 \quad (A3.6.3) \]

and \(k(t) = 0 \) for \(t < 0 \). It follows that \(k(t) \geq 0 \) for all \(t \), and

\[\| k \|_1 = \int_{0}^{\infty} k(\sigma) d\sigma = \int_{t}^{\infty} k(t-\sigma) d\sigma = 1 \quad (A3.6.4) \]

Similarly
\[g(t) = e^{-at} \sum_{k=1}^{r} \frac{(t-k)^{r-k}}{(r-k)!} a^{r-k} \quad t \geq 0 \quad (A3.6.5) \]
and \(g(t) = 0 \) for \(t < 0 \). It follows that \(g(t) \geq 0 \) for all \(t \), and
\[\| g \|_1 = \lim_{\tau \to +\infty} \int_{-\infty}^{\tau} g(t) dt = \frac{r}{a} \quad (A3.6.6) \]

We are now ready to prove lemma 3.6.2. Let \(r \) be the relative degree of \(\dot{\vec{y}} \), and
\[\hat{z}(s) = \frac{a^r}{s^r + a^r} \hat{u}(s) \quad (A3.6.7) \]
where \(a > 0 \) is an arbitrary constant to be defined later. Using (A3.6.7)
\[\hat{y}(s) = \frac{(s^r + a^r)}{a^r} \hat{\vec{y}}(s) \hat{z}(s) \quad (A3.6.8) \]
Since the transfer function from \(\hat{z}(s) \) to \(\hat{y}(s) \) has relative degree 0 and is minimum phase, it has a proper and stable inverse. By lemma 3.6.1
\[\| z_i \|_p \leq b_1 \| y_i \|_p + b_2 \quad (A3.6.9) \]
We will prove that
\[\| u_i \|_p \leq c_1 \| z_i \|_p + c_2 \quad (A3.6.10) \]
so that the lemma will be verified with \(a_1 = c_1 b_1 \), \(a_2 = c_1 b_2 + c_2 \).

Derivation of (A3.6.10)
We have that
\[z(t) = \epsilon(t) + \int_{0}^{t} k(t - \tau) u(\tau) d\tau \quad (A3.6.11) \]
where \(\epsilon(t) \) is an exponentially decaying term due to the initial conditions, and \(k(t) \) is the impulse response corresponding to the transfer function in (A3.6.7) (derived in the auxiliary lemma). Integrate (A3.6.11) by parts to obtain
\[z(t) = \epsilon(t) + u(t) \int_{-\infty}^{t} k(t - \sigma) d\sigma - u(0) \int_{-\infty}^{0} k(t - \sigma) d\sigma \]

When \(u(t) = z(t) \), so that (A3.6.10) is trivially true. For \(\epsilon(t) \),

\[z(t) = \epsilon(t) + \int_{0}^{t} k(t - \sigma) d\sigma \quad (A3.6.12) \]

Using the results of the auxiliary lemma
\[z(t) = \epsilon(t) + u(t) - u(0) g(t) - \int_{0}^{t} g(t - \tau) u(\tau) d\tau \quad (A3.6.13) \]
Since \(g(t) \) is exponentially decaying, \(u(0) g(t) \) can be included in \(\epsilon(t) \). Also, using again the auxiliary lemma, together with lemma 3.6.1, and then the assumption on \(\hat{u} \), it follows that
\[\| u \|_p \leq \| z_i \|_p + \| \epsilon_i \|_p + \frac{r}{a} \| \hat{u}_i \|_p \]
\[\leq \| z_i \|_p + \| \epsilon_i \|_p + \frac{r}{a} k_1 \| u_i \|_p + \frac{r}{a} k_2 \quad (A3.6.14) \]
Since \(a \) is arbitrary, let it be sufficiently large that \(\frac{r}{a} k_1 < 1 \). Consequently,
\[\| u_i \|_p \leq \frac{1}{1 - \frac{r}{a} k_1} \| z_i \|_p + \frac{\| \epsilon_i \|_p + \frac{r}{a} k_2}{1 - \frac{r}{a} k_1} \]
\[c_1 \| z_i \|_p + c_2 \quad (A3.6.15) \]

Proof of Corollary 3.6.3
(a) From lemma 3.6.2.
(b) Since \(\dot{\vec{y}} \) is strictly proper, both \(y \) and \(\dot{y} \) are bounded.
(c) We have that \(y = \vec{H}(u) \) and \(\dot{y} = \dot{H}(\dot{u}) \). Using successively lemma 3.6.1, the regularity of \(u \), and lemma 3.6.2, it follows that for some constants \(k_1, \ldots, k_6 \)
\[\| \dot{y} \| \leq k_1 \| \dot{u} \| + k_2 \]
\[\leq k_3 \| u \| + k_4 \]
\[\leq k_5 \| y \| + k_6 \quad (A3.6.16) \]
The proof can easily be extended to the vector case. \(\square \)
Proof of Lemma 3.6.4

Let
\[\hat{H}(s) = h_0 + \hat{H}_1(s) \]
(A3.6.17)
where \(\hat{H}_1 \) is strictly proper (and stable). Let \(h_1 \) be the impulse response corresponding to \(\hat{H}_1 \). The output \(y(t) \) is given by
\[y(t) = e(t) + h_0 u(t) + \int_0^t h_1(t - \tau) u(\tau) d\tau \]
(A3.6.18)
where \(e(t) \) is due to the initial conditions. Inequality (3.6.9) follows, if we define
\[\gamma_1(t) = |h_0| \beta_1(t) + \int_0^t |h_1(t - \tau)| \beta_1(\tau) d\tau \]
(A3.6.19)
and
\[\gamma_2(t) = |e(t)| + |h_0| \beta_2(t) + \int_0^t |h_1(t - \tau)| \beta_2(\tau) d\tau \]
(A3.6.20)

Since \(\epsilon \in L_2 \) and \(h_1 \in L_1 \cap L_\infty \), we also have that \(|\epsilon| \in L_2 \), \(|h_1| \in L_1 \cap L_\infty \). Since \(\beta_1, \beta_2 \in L_2 \), it follows that the last term of (A3.6.19) and similarly the last term of (A3.6.20) belong to \(L_2 \cap L_\infty \), and go to zero as \(t \to \infty \) (see e.g., Desoer & Vidyasagar [1975], exercise 5, p. 242). The conclusions follow directly from this observation. \(\square \)

Proof of Lemma 3.6.5

Let \([A, b, c^T, d]\) be a minimal realization of \(\hat{H} \), with \(A \in \mathbb{R}^{m \times m}, b \in \mathbb{R}^m, c \in \mathbb{R}^m, \) and \(d \in \mathbb{R} \). Let \(x : \mathbb{R} \to \mathbb{R}^m, \) and \(y_1 : \mathbb{R} \to \mathbb{R} \) such that
\[\dot{x} = Ax + b (w^T \phi) \]
\[y_1 = c^T x \]
(A3.6.21)
and \(W : \mathbb{R} \to \mathbb{R}^{m \times n}, y_2 : \mathbb{R} \to \mathbb{R} \) such that
\[\dot{W} = AW + b w^T \]
\[y_2 = c^T W \phi \]
(A3.6.22)
Thus
\[\hat{H}(w^T \phi) = y_1 + d (w^T \phi) \]
\[\hat{H}(w^T) \phi = y_2 + (d w^T) \phi \]
(A3.6.23)

Since
\[\frac{d}{dt} (W \phi) = \dot{W} \phi + W \dot{\phi} = AW \phi + b w^T \phi + W \phi \]
(A3.6.24)
it follows that
\[\frac{d}{dt} (x - W \phi) = A (x - W \phi) - W \phi \]
\[y_1 - y_2 = c^T (x - W \phi) \]
(A3.6.25)
The result then follows since
\[\hat{H}(w^T \phi) - \hat{H}(w^T) \phi = y_1 - y_2 = \hat{H}_\epsilon(W \phi) = \hat{H}_\epsilon(\hat{H}_\phi(w^T) \phi) \]
(A3.6.26)
\(\square \)

Proof of Theorem 3.7.3

The proof follows the steps of the proof of theorem 3.7.1 and is only sketched here.

(a) Derive properties of the identifier that are independent of the boundedness of the regressor

The properties of the identifier are the standard properties obtained in theorems 2.4.1-2.4.4

\[|\psi^T(t) \tilde{w}(t)| = ||\tilde{w}(t)||_\infty + |\psi(t)| \]
\[\beta \in L_2 \cap L_\infty \]
\[\psi \in L_\infty \]
\[\tilde{\psi} \in L_2 \cap L_\infty \]
\[a_{m+1}(t) \geq k_{\min} > 0 \quad \text{for all } t \geq 0 \]
(A3.7.1)
The inequality for \(a_{m+1}(t) \) follows from the use of the projection in the update law.

We also noted, in Section 3.3, that if \(\pi \) is bounded and \(a_{m+1} \) is bounded away from zero, then \(\tilde{\pi} \) is also bounded, and the transformation has bounded derivatives. The vector \(q \) of the coefficients of the polynomial \(\hat{q} \) is also bounded. By definition of the transformation, \(\theta(\pi^*) = \theta^* \). Therefore, \(\psi \in L_\infty \), \(\tilde{\psi} \in L_2 \cap L_\infty \) implies that \(\phi \in L_\infty \), \(\phi \in L_2 \cap L_\infty \). Also, we have that \((k_m / ||a_{m+1}||_\infty) \leq c_{d}(t) \leq k_m / k_{\min} \) for all \(t \geq 0 \).

(b) Express the system states and inputs in term of the control error

As in theorem 3.7.1.
(e) Relate the identifier error to the control error

We first establish an equality of ratios of polynomials, then we transform it to an operator equality. Using a similar approach as in the comments before the proof, we have that

\[\tilde{q} \hat{\alpha} - \tilde{q} \hat{\alpha}^* = a_{m+1}(\hat{\lambda} - \hat{\lambda}) - k_p \hat{\gamma}_p \]
\[= -a_{m+1}(\hat{\zeta} - \hat{\zeta}^*) + a_{m+1}(\hat{\lambda} - \hat{\lambda}^*) - k_p \hat{\gamma}_p \]
\[= -a_{m+1}(\hat{\zeta} - \hat{\zeta}^*) + (a_{m+1} \hat{\gamma}^* - k_p \hat{\gamma}) \hat{\gamma}_p \]
\[= -a_{m+1}(\hat{\zeta} - \hat{\zeta}^*) + (a_{m+1} \hat{\gamma}^* - \hat{\lambda}_0 \hat{\gamma}_m + \hat{\gamma} \hat{\gamma}_p) \]
\[= -a_{m+1}(\hat{d} - \hat{d}^*) + \left(\frac{a_{m+1}}{k_p} \hat{\gamma}^* + \frac{a_{m+1}}{k_p} \hat{\lambda}_0 \frac{\hat{d}_m}{\hat{d}_p} + \hat{\lambda}_0 \frac{\hat{d}_m}{\hat{d}_p} \right) \hat{\gamma}_p \]
\[\text{(A3.7.3)} \]

Therefore
\[\frac{\hat{\gamma}}{\hat{\lambda}_0} \left[\hat{\alpha} - \hat{\alpha}^* \right] + \frac{\hat{\gamma}}{\hat{\lambda}_0} \left[\hat{b} - \hat{b}^* \right] \frac{k_p \hat{\gamma}_p}{\hat{d}_p} \]
\[= -a_{m+1} \left(\frac{\hat{\zeta} - \hat{\zeta}^*}{\hat{\lambda}_0} + \frac{\hat{d} - \hat{d}^*}{\hat{\lambda}_0} \right) \frac{\hat{d}_m}{\hat{d}_p} \frac{1}{\hat{\lambda}_0} \]
\[= -\frac{k_m}{c_0} \left(\frac{\hat{\zeta} - \hat{\zeta}^*}{\hat{\lambda}_0} + \frac{\hat{d} - \hat{d}^*}{\hat{\lambda}_0} \right) \hat{\gamma} \right) \hat{d}_m \hat{\gamma}_p \frac{1}{\hat{\lambda}_0} \]
\[\text{(A3.7.4)} \]

where we divided by $\hat{\lambda} \hat{\lambda}_0$ to obtain proper stable transfer functions. The polynomial $\hat{\lambda}_0$ is Hurwitz and \hat{q} is bounded, so that the operator $q^T \hat{S}_f / \hat{\lambda}_0$ is a bounded operator.

We now transform this polynomial equality into an operator equality as in the comments before the proof. Applying both sides of (A3.7.4) to u.

\[-q^T \hat{S}_r / \hat{\lambda}_0 (\hat{w}^T \psi) = \frac{k_m}{c_0} \left((c_0 - c_0^*) \hat{M}^{-1} \hat{P} / \hat{\lambda}_0 (u) + \hat{\phi}^T \frac{1}{\hat{\lambda}_0} (\hat{w}) \right) \]
\[\text{(A3.7.5)} \]

The right-hand side is very reminiscent of the signal z obtained in the input error scheme. A filtered version of the signal $\hat{M}^{-1} \hat{P} (u) = r_p$ appears, instead of r, with the error $c_0 - c_0^*$. From proposition 3.3.1,

\[\hat{L} = \hat{\lambda}_0 \text{ (cf. (3.3.17))} \]
\[c_0 \hat{M}^{-1} \hat{P} / \hat{\lambda}_0 (u) = \frac{1}{\hat{\lambda}_0} (u) - \frac{1}{\hat{\lambda}_0} (\hat{\phi}^T \hat{w}) \]
\[\text{(A3.7.6)} \]

and since $u = c_0 r + \hat{\phi}^T \hat{w}$, it follows that

\[\hat{M}^{-1} \frac{\hat{P}}{\hat{\lambda}_0} / \hat{\lambda}_0 (u) = \frac{1}{c_0} \left[\frac{1}{\hat{\lambda}_0} (c_0 r) + \frac{1}{\hat{\lambda}_0} (\hat{\phi}^T \hat{w}) \right] \]
\[\text{(A3.7.7)} \]

The right-hand side of (A3.7.5) becomes, using (A3.7.7) followed by the swapping lemma (and using the notation of the swapping lemma)

\[\frac{k_m}{c_0} \left[\frac{c_0 - c_0^*}{\hat{\lambda}_0} \frac{1}{\hat{\lambda}_0} (c_0 r) + \frac{1}{\hat{\lambda}_0} (\hat{\phi}^T \hat{w}) + \frac{c_0}{c_0} \left(-\frac{1}{\hat{\lambda}_0} (\hat{\phi}^T \hat{w}) - \frac{1}{\hat{\lambda}_0} (\hat{\phi}^T \hat{w}) \right) \right] \]
\[= \frac{k_m}{c_0} \left[\frac{1}{\hat{\lambda}_0} (c_0 - c_0^*) r - \hat{\lambda}_0 \tilde{\Lambda} - \hat{\lambda}_0 \tilde{\Lambda} (c_0 - c_0^*) \right] \]
\[+ \frac{1}{\hat{\lambda}_0} (\hat{\phi}^T \hat{w}) - \frac{c_0}{c_0} \hat{\lambda}_0 \tilde{\Lambda} (\tilde{\Lambda}_b (\hat{w}^T \phi)) \]
\[\text{(A3.7.8)} \]

On the other hand, using again the swapping lemma, the left-hand side of (A3.7.5) becomes

\[q^T \frac{\tilde{S}_r}{\hat{\lambda}_0} (\hat{w}^T \psi) = q^T \frac{\tilde{S}_r}{\hat{\lambda}_0} (\hat{w}^T \psi) - q^T \tilde{S}_r (\tilde{S}_r (\hat{w}^T \phi)) \]
\[\text{(A3.7.9)} \]

where the transfer functions $\tilde{\Lambda}_b, \tilde{\Lambda}_c, \tilde{\Lambda}_d, \text{ and } \tilde{\Lambda}_e$ result from the application of the swapping lemma. The output error is then equal to (using (3.7.2), (A3.7.5), (A3.7.8), (A3.7.9))

\[y_p - y_m = \frac{1}{c_0} \hat{M} \left[(c_0 - c_0^*) r + \hat{\phi}^T \hat{w} \right] \]
\[\frac{k_m}{c_0} \frac{1}{\hat{\lambda}_0} ((c_0 - c_0^*) r) + \frac{1}{\hat{\lambda}_0} (\hat{\phi}^T \hat{w}) \]
\[\text{(A3.7.10)} \]
\begin{align}
\dot{M} \hat{\lambda}_0 &= \frac{1}{k_m} \hat{M} \hat{\lambda}_0 \left[-q^T \tilde{s}_\psi \frac{\hat{\lambda}_{\phi}}{\lambda_0} (\tilde{\psi}^T \hat{\psi}) + q^T \tilde{S}_\psi \left[\hat{S}_{ob}(\tilde{\psi}^T) \hat{\psi} \right] \right] \\
&+ \frac{k_m}{c_0} \hat{\lambda}_0 \left[\Delta_{ob}(c_0 \rho) \left[\frac{c_0 - c^*_0}{c_0} \right] \right] \\
&+ \frac{k_m}{c_0} \hat{\lambda}_0 \left[\Delta_{ob}(\tilde{\psi}^T) \hat{\phi} \right] \tag{A3.7.10}
\end{align}

(d) Establish the regularity of the signals

As in theorem 3.7.1.

(e) Stability Proof

\(\hat{M} \hat{\lambda}_0 \) is a stable transfer function and since \(q^T \) is bounded, \(q^T \hat{s}_\psi / \hat{\lambda}_0 \) is a bounded operator. We showed that \(\hat{\psi}, \hat{\phi}, \hat{\eta}_0 \in L_2 \), so that, from (A3.7.10) and part (a), an inequality such as (3.7.19) can be obtained.

As before \(\tilde{\psi} \) regular implies that \(\beta \to 0 \) as \(t \to \infty \). The boundedness of all signals in the adaptive system then follows as in theorem 3.7.1. Similarly, \(y_p - y_m \in L_2 \) and tends to zero as \(t \to \infty \). Since the relative degree of the transfer function from \(u \to \tilde{\psi} \) is the same as the relative degree of \(\hat{M}, \hat{\lambda}_0 \), and therefore \(\hat{L}^{-1}, \) the same result is true for \(\tilde{\psi} - \hat{\psi}_m \).

Proof of Lemma 4.2.1

Define
\begin{align}
w_i(t, \tau, x) &= \int_0^t d(\tau, x) e^{-(t - \tau)} d\tau \tag{A4.2.1} \\
w_0(t, \tau, x) &= \int_0^t d(\tau, x) d\tau \tag{A4.2.2}
\end{align}

From the assumptions
\[|w_0(t + t_0, x) - w_0(t_0, x)| \leq \gamma(t) \cdot t \tag{A4.2.3} \]
for all \(t, t_0 \geq 0, x \in B_k \). Integrating (A4.2.1) by parts

Using the fact that
\[\int_0^t e^{-(t - \tau)} w_0(t, \tau, x) d\tau = w_0(t, x) - w_0(t, x) e^{-t} \tag{A4.2.4} \]
(A4.2.4) can be rewritten as
\[w_i(t, x) = w_0(t, x) e^{-t} + \int_0^t e^{-(t - \tau)} (w_0(t, x) - w_0(t, x)) d\tau \tag{A4.2.6} \]
and, using (A4.2.3) and the fact that \(w_0(0, x) = 0 \),
\[|w_i(t, x)| \leq \gamma(t) te^{-t} + \int_0^t e^{-(t - \tau)} (1 - \gamma(t)) d\tau \tag{A4.2.7} \]
Consequently,
\[|\epsilon w_i(t, x)| \leq \sup_{t' \geq 0} \gamma \left(\frac{t'}{\epsilon} \right) e^{t'} + \sup_{t' \geq 0} \gamma \left(\frac{t'}{\epsilon} \right) e^{-t'} \tag{A4.2.8} \]
Since, for some \(\beta \), \(|d(t, x)| \leq \beta \), we also have that \(\gamma(t) \leq \beta \). Note that, for all \(t' \geq 0, \gamma(t') \leq \beta \), and \(t' e^{-t'} \leq t' \), so that
\[|\epsilon w_i(t, x)| \leq \sup_{t' \geq 0} \gamma \left(\frac{t'}{\epsilon} \right) e^{t'} + \sup_{t' \geq 0} \gamma \left(\frac{t'}{\epsilon} \right) e^{-t'} \]
\[+ \frac{\sqrt{\epsilon}}{\beta} \left(\frac{t'}{\epsilon} \right) e^{-t'} d\tau + \frac{1}{\sqrt{\epsilon}} \gamma \left(\frac{t'}{\epsilon} \right) e^{-t'} d\tau \tag{A4.2.9} \]
This, in turn, implies that
\[|\epsilon w_i(t, x)| \leq \beta \sqrt{\epsilon} + \gamma \left(\frac{1}{\sqrt{\epsilon}} \right) e^{t} + \frac{\beta}{2} \frac{1}{\sqrt{\epsilon}} e^{-t} + \gamma \left(\frac{1}{\sqrt{\epsilon}} \right) (1 + \sqrt{\epsilon}) e^{-t} \]
\[:= \xi(\epsilon) \tag{A4.2.10} \]
From the assumption on \(\gamma \), it follows that \(\xi(\epsilon) \in K \). From (A4.2.1)
\[\frac{\partial w_i(t, x)}{\partial t} - d(t, x) = -\epsilon w_i(t, x) \tag{A4.2.11} \]
so that the first part of the lemma is verified.
If \(\gamma(T) = a / T' \), then the right-hand side of (A4.2.8) can be computed explicitly
\[
\sup_{t' \geq 0} a \epsilon(t')^{1-r} e^{-t'} = a \epsilon(1-r)^{1-r} e^{-r} \leq a \epsilon \quad (A4.2.12)
\]
and, with \(\Gamma \) denoting the standard gamma function,
\[
\int_0^\infty a \epsilon(t')^{1-r} e^{-t'} \, dt' = a \epsilon \Gamma(2-r) \leq a \epsilon \quad (A4.2.13)
\]
Defining \(\xi(\epsilon) = 2a \epsilon \), the second part of the lemma is verified.

Proof of Lemma 4.2.2

Define \(w_t(t, x) \) as in lemma 4.2.1. Consequently,
\[
\frac{\partial w_t(t, x)}{\partial x} = \frac{\partial}{\partial x} \left[\int_0^t d(\tau, x) e^{-\epsilon(t-\tau)} \, d\tau \right]
\]
\[
= \int_0^t \left(\frac{\partial}{\partial x} d(\tau, x) \right) e^{-\epsilon(t-\tau)} \, d\tau \quad (A4.2.14)
\]
Since \(\frac{\partial d(t, x)}{\partial x} \) is zero mean, and is bounded, lemma 4.2.1 can be applied to \(\frac{\partial d(t, x)}{\partial x} \), and inequality (4.2.6) of lemma 4.2.1 becomes inequality (4.2.10) of lemma 4.2.2. Note that since \(\frac{\partial d(t, x)}{\partial x} \) is bounded, and \(d(t, 0) = 0 \) for all \(t \geq 0 \), \(d(t, x) \) is Lipschitz.

Since \(d(t, x) \) is zero mean, with convergence function \(\gamma(T)|x| \), the proof of lemma 4.2.1 can be extended, with an additional factor \|x\|.

This leads directly to (4.2.8) and (4.2.9) (although the function \(\xi(\epsilon) \) may be different from that obtained with \(\frac{\partial d(t, x)}{\partial x} \)), these functions can be replaced by a single \(\xi(\epsilon) \).

Proof of Lemma 4.2.3

The proof proceeds in two steps.

(a) For \(\epsilon \) sufficiently small, and for \(t \) fixed, the transformation is a homeomorphism.

Apply lemma 4.2.2, and let \(\epsilon_1 \) such that \(\xi(\epsilon_1) < 1 \). Let \(\epsilon \leq \epsilon_1 \).

Given \(z \in B_h \), the corresponding \(x \) such that

\[
x = z + \epsilon w_t(t, z) \quad (A4.2.15)
\]
may not belong to \(B_h \). Similarly, given \(x \in B_h \), the solution \(z \) of (A4.2.15) may not exist in \(B_h \). However, for any \(x, z \) satisfying (A4.2.15), inequality (4.2.8) implies (4.2.16) and
\[
(1 - \xi(\epsilon)) |z| \leq |x| \leq (1 + \xi(\epsilon)) |z| \quad (A4.2.16)
\]
Define
\[
h'(\epsilon) = \min \left(h(1 - \xi(\epsilon)), \frac{h}{1 + \xi(\epsilon)} \right) = h(1 - \xi(\epsilon)) \quad (A4.2.17)
\]
and note that \(h'(\epsilon) \to h \) as \(\epsilon \to 0 \).

We now show that
- for all \(z \in B_h \), there exists a unique \(x \in B_h \) such that (A4.2.15) is satisfied,
- for all \(x \in B_h \), there exists a unique \(z \in B_h \) such that (A4.2.15) is satisfied.

In both cases, \(|x - z| \leq \xi(\epsilon) h \).

The first part follows directly from (A4.2.15), (A4.2.16). The fact that \(|x - z| \leq \xi(\epsilon) h \) also follows from (A4.2.15), (4.2.8) and implies that, if a solution \(z \) exists to (A4.2.15), it must lie in the closed ball \(U \) of radius \(\xi(\epsilon) h \) around \(x \). It can be checked, using (4.2.10), that the mapping \(F(x) = x - \epsilon w_t(t, x) \) is a contraction mapping in \(U \), provided that \(\xi(\epsilon) < 1 \). Consequently, \(F \) has a unique fixed point \(z \) in \(U \). This solution is also a solution of (A4.2.15), and since it is unique in \(U \), it is also unique in \(B_h \) (and actually in \(R^n \)).

(b) The transformation of variable leads to the differential equation (4.2.17)

Applying (A4.2.15) to the system (4.2.1)
\[
\begin{align*}
L + \epsilon \frac{\partial w_t}{\partial z} \, \dot{z} & = \epsilon f_{av}(z) + \epsilon \left[f(t, z, 0) - f_{av}(z) - \frac{\partial w_t}{\partial t} \right] \\
& + \epsilon \left[f(t, z + \epsilon w_t(t, z), \epsilon) - f(t, z, \epsilon) \right]
\end{align*}
\]
where, using the assumptions, and the results of lemma 4.2.2
\[|p(t, z, \epsilon)| \leq \xi(\epsilon)|z| + \xi(\epsilon)l_1|z| + \epsilon l_2|z| \] (A4.2.19)

For \(\epsilon \leq \epsilon_1 \), (4.2.10) implies that \(I + \epsilon \frac{\partial w_1}{\partial z} \) has a bounded inverse for all \(t \geq 0, z \in B_h \). Consequently, \(z \) satisfies the differential equation
\[
\dot{z} = \left[I + \epsilon \frac{\partial w_1}{\partial z} \right]^{-1} \left[\epsilon f_{av}(z) + \epsilon p(t, z, \epsilon) \right]
= \epsilon f_{av}(z) + \epsilon p(t, z, \epsilon) \quad z(0) = x_0
\] (A4.2.20)

where
\[
p(t, z, \epsilon) = \left[I + \epsilon \frac{\partial w_1}{\partial z} \right]^{-1} \left[\epsilon f_{av}(z) + \epsilon p(t, z, \epsilon) - \epsilon \frac{\partial w_2}{\partial t} f_{av}(z) \right]
\] (A4.2.21)

and
\[
|p(t, z, \epsilon)| \leq \frac{1}{1 - \xi(\epsilon_1)} \left[\xi(\epsilon) + \xi(\epsilon)l_1 + \epsilon l_2 + \xi(\epsilon)l_{av} \right] |z|
= \psi(\epsilon) |z|
\] (A4.2.22)

for all \(t \geq 0, \epsilon \leq \epsilon_1, z \in B_h \). □

Proof of Lemma 4.4.1
The proof is similar to the proof of lemma 4.2.3. We consider the transformation of variable
\[
x = z + \epsilon w_1(t, z)
\] (A4.4.1)

with \(\epsilon \leq \epsilon_1 \), such that \(\xi(\epsilon_1) < 1 \). (4.4.1) becomes
\[
\dot{z} = \left[I + \epsilon \frac{\partial w_1}{\partial z} \right]^{-1} \left[\epsilon f_{av}(z) + \left[f(t, z, 0) - f_{av}(z) - \frac{\partial w_2}{\partial t} \right] \right]
+ \left[f(t, z + \epsilon w_1, 0) - f(t, z, 0) \right]
\]

or
\[
\dot{z} = \epsilon f_{av}(z) + \epsilon p_1(t, z, \epsilon) + \epsilon p_2(t, z, y, \epsilon) \quad z(0) = x_0
\] (A4.4.2)

where
\[
|p_1(t, z, \epsilon)| \leq \frac{1}{1 - \xi(\epsilon_1)} \left[\xi(\epsilon)l_{av} + \xi(\epsilon)l_1 \right] |z|
= \xi(\epsilon)k_1|z|
\] (A4.4.4)

and
\[
|p_2(t, z, y, \epsilon)| \leq \frac{1}{1 - \xi(\epsilon_1)} l_2|y| = k_2|y|
\] (A4.4.5)

Proof of Theorem 4.4.2
The proof assumes that for all \(t \in [0, T/\epsilon] \), the solutions \(x(t), y(t) \), and \(z(t) \) (to be defined) remain in \(B_h \). Since this is not guaranteed a priori, the steps of the proof are only valid for as long as the condition is verified. By assumption, \(x_{av}(t) \in B_{k_0} \), with \(h' < h \). We will show that by letting \(\epsilon \) and \(h_0 \) sufficiently small, we can let \(x(t) \) be arbitrarily close to \(x_{av}(t) \) and \(y(t) \) arbitrarily small. It then follows, from a contradiction argument, that \(x(t), y(t) \in B_h \) for all \(t \in [0, T/\epsilon] \), provided that \(\epsilon \) and \(h_0 \) are sufficiently small.

Using lemma 4.4.1, we transform the original system (4.4.1), (4.4.2) into the system (4.4.11), (4.4.4). A bound on the error \(|z(t) - x_{av}(t)| \) can be calculated by integrating the difference (4.4.11)-(4.4.4), and by using (4.4.7) and (4.4.12)

\[
|z(t) - x_{av}(t)| \leq \epsilon l_{av} \int_0^t |\dot{z}(\tau) - \dot{x}_{av}(\tau)| d\tau + \epsilon \xi(\epsilon)k_1 \int_0^t |\dot{z}(\tau)| d\tau
+ \epsilon k_2 \int_0^t |y(\tau)| d\tau
\] (A4.4.6)

Bound on \(|y(t)| \)
To obtain a bound on \(|y(t)| \), we divide the interval \([0, T/\epsilon]\) into intervals \([t_i, t_{i+1}]\) of length \(\Delta T \) (the last interval may be of smaller length, and \(\Delta T \) will be defined later). The differential equation for \(y \) is
and is rewritten on the time interval \([t_i, t_{i+1}]\) as follows

\[
\dot{y} = A_x y + e^g(t, x, y) + (A_x - A_{\dot{x}}) y
\]

(A4.4.8)

where \(A_x = A(x(t))\), and \(A_{\dot{x}} = A(x(t_i))\), so that the solution \(y(t)\), for \(t \in [t_i, t_{i+1}]\), is given by

\[
y(t) = e^{A_{\dot{x}}(t-t_i)} y_i + \int_{t_i}^{t} e^{A_{\dot{x}}(t-r)} g(r, x, y) \, dr + \int_{t_i}^{t} e^{A_x(t-r)} (A_x - A_{\dot{x}}) y(r) \, dr
\]

(A4.4.9)

where \(y(t) = y(t_i)\). From the assumptions, it follows that

\[
\|A_x - A_{\dot{x}}\| \leq k_{\alpha} |x| (r - t_i) \leq \epsilon (l_1 + l_2) h k_{\alpha} \Delta T
\]

(A4.4.10)

and, using the uniform exponential stability assumption on \(A(x)\)

\[
|y(t)| \leq m |y_0| e^{-\lambda (t - t_i)} + \epsilon \frac{m \lambda}{h} \left((l_3 + l_4) + (l_1 + l_2) k_{\alpha} \Delta T \right)
\]

(A4.4.11)

Let the last term in (A4.4.11) be denoted by \(\epsilon k_b\), and use (A4.4.11) as a recursion formula for \(y_i\), so that

\[
|y_i| \leq \left(m e^{-\lambda \Delta T} \right)^i |y_0| + \epsilon k_b \sum_{j=0}^{i-1} \left(m e^{-\lambda \Delta T} \right)^j
\]

(A4.4.12)

Choose \(\Delta T\) sufficiently large that

\[
m e^{-\lambda \Delta T} \leq e^{-\lambda \Delta T/2} \quad \text{or} \quad \Delta T \geq \frac{2}{\lambda} \ln m
\]

(A4.4.13)

It follows that

\[
\sum_{j=0}^{i-1} \left(m e^{-\lambda \Delta T} \right)^j \leq \sum_{j=0}^{\infty} \left(e^{-\lambda \Delta T/2} \right)^j = \frac{1}{1 - e^{-\lambda \Delta T/2}}
\]

(A4.4.14)

Combining (A4.4.12)–(A4.4.14) and using the assumption \(y_0 \in B_{h_0}\)

\[
|y_i| \leq e^{-\lambda \Delta T/2} h_0 + \frac{\epsilon k_b}{1 - e^{-\lambda \Delta T/2}} := e^{-\lambda \Delta T/2} h_0 + \epsilon k_c
\]

(A4.4.15)

Using this result in (A4.4.11), it follows that for all \(t \in [t_i, t_{i+1}]\)

\[
|y(t)| \leq m e^{-\lambda \Delta T/2} h_0 e^{-\lambda (t - t_i)} + m \epsilon k_c e^{-\lambda (t - t_i)} + \epsilon k_b
\]

(A4.4.16)

Since the last inequality does not depend on \(i\), it gives a bound on \(|y(t)|\) for all \(t \in [0, T/\epsilon]\).

Bound on \(z(t) - x_{av}(t)\)

We now return to (A4.4.6), and to the approximation error, using the bound on \(|y(t)|\)

\[
|z(t) - x_{av}(t)| \leq \epsilon l_{av} \int_{0}^{t} |z(r) - x_{av}(r)| \, dr + \epsilon \xi(t) k_1 \int_{0}^{t} h \, dr
\]

(A4.4.17)

\[
+ \epsilon k_2 \int_{0}^{t} \left(m h_0 e^{-\lambda \tau/2} + \epsilon (mk_c + k_b) \right) \, d\tau
\]

and, using the Bellman–Gronwall lemma (lemma 1.4.2)

\[
|z(t) - x_{av}(t)| \leq \epsilon l_{av} \left[\int_{0}^{t} \left(\xi(t) k_1 h + k_2 mh_0 e^{-\lambda \tau/2} + k_2 \xi(t) (mk_c + k_b) \right) \, d\tau \right] e^{e^{l_{av}(t - \tau)}}
\]

(A4.4.18)

\[
|z(t) - x_{av}(t)| \leq \left(\epsilon (\xi(t) k_1 h + k_2 mh_0 e^{-\lambda \tau/2} + k_2 \xi(t) (mk_c + k_b)) \right) e^{l_{av} (t - \tau)}
\]

(A4.4.19)

and, using (A.4.4.10)

\[
|x(t) - x_{av}(t)| \leq \psi(e) b_T
\]

(A4.4.19)

for some \(b_T\).

Assumptions

We assumed in the proof that all signals remained in \(B_h\). By assumption, \(x_{av}(t) \in B_{h'}\), for some \(h' < h\). Let \(h_0\) and \(\epsilon\) be sufficiently small so that, for all \(\epsilon \leq \epsilon_T \leq \epsilon_1\), we have that \(mh_0 + \epsilon (mk_c + k_b) \leq h\) (cf. (A.4.16)), and that \(\psi(e) b_T \leq h - h'\) (cf. (A.4.27)). It follows, from a simple contradiction argument, that the solutions \(x(t), y(t)\) and \(z(t)\) remain in \(B_h\) for all \(t \in [0, T/\epsilon]\), so that all steps of the proof are valid, and (A4.4.19) is in fact satisfied over the whole time interval.
Proof of Theorem 4.4.3
The proof relies on the converse theorem of Lyapunov for exponentially stable systems (theorem 1.4.3). Under the hypotheses, there exists a function \(v(x_{av}) : \mathbb{R}^n \to \mathbb{R}^+ \), and strictly positive constants \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \) such that, for all \(x_{av} \in B_h_c, \)

\[
\begin{align*}
\alpha_1 |x_{av}|^2 &\leq v(x_{av}) \leq \alpha_2 |x_{av}|^2 \tag{A4.4.20} \\
v(x_{av}) &\leq -\varepsilon \alpha_3 |x_{av}|^2 \tag{A4.4.21} \\
\frac{\partial v}{\partial x_{av}} &\leq \alpha_4 |x_{av}| \tag{A4.4.22}
\end{align*}
\]

The derivative in (A4.4.21) is to be taken along the trajectories of the averaged system (4.4.4).

We now study the stability of the original system (4.4.1), (4.4.2), through the transformed system (4.4.11), (4.4.2), where \(x(z) \) is defined in (4.4.9). Consider the Lyapunov function

\[
v_1(z, y) = v(z) + \frac{\alpha_2}{p_2} y^T P(x(z)) y \tag{A4.4.23}
\]

where \(P(x), p_1 \) are defined in the comments after the definition of uniform exponential stability of \(A(x) \). Defining \(\alpha' = \min(\alpha_1, \frac{\alpha_2}{p_2} p_1) \), it follows that

\[
\alpha'(|z|^2 + |y|^2) \leq v_1(z, y) \leq \alpha_2(|z|^2 + |y|^2) \tag{A4.4.24}
\]

The derivative of \(v_1 \) along the trajectories of (4.4.11)-(4.4.2) can be bounded, using the following inequalities

\[
\begin{align*}
\dot{v}_1(z, y) &\leq -\varepsilon \alpha_3 |z|^2 + \varepsilon \xi(x) k_1 \alpha_4 |z|^2 + \varepsilon k_2 \alpha_4 |z| |y| \\
&\quad + \frac{\alpha_2}{p_2} q_1 |y|^2 + 4 \varepsilon k_1 \alpha_2 |z| |y| + 2 \varepsilon k_2 \alpha_2 |y|^2 \tag{A4.4.25}
\end{align*}
\]

for \(\varepsilon \leq \varepsilon_1 \) (so that the transformation \(x \to z \) is well defined and \(|x| \leq 2 |z| \)). We now calculate bounds on the terms in (A4.4.25).

\[
\text{Appendix}
\]

Bound on \(|\partial P/\partial x| \)
Note that \(P(x) \) can be defined by

\[
P(x) = \int_0^\infty e^{A^T(x)t} Q e^{A(x)t} dt
\]

so that

\[
\frac{\partial P(x)}{\partial x} = \int_0^\infty \left[\frac{\partial}{\partial x_i} e^{A^T(x)t} \right] Q e^{A(x)t} dt
\]

The partial derivatives in parentheses solve the differential equation

\[
\frac{d}{dt} \left[\frac{\partial}{\partial x_i} e^{A(x)t} \right] = A(x) \left[\frac{\partial}{\partial x_i} e^{A(x)t} \right] + \frac{\partial A(x)}{\partial x_i} e^{A(x)t} \tag{A4.4.28}
\]

with zero initial conditions, so that

\[
\frac{\partial}{\partial x_i} e^{A(x)t} = \int_0^t e^{A(x)(t-s)} \frac{\partial A(x)}{\partial x_i} e^{A(x)s} ds \tag{A4.4.29}
\]

From the boundedness of \(\frac{\partial A(x)}{\partial x_i} \), and from the exponential stability of \(A(x) \), it follows that

\[
\left\| \frac{\partial}{\partial x} e^{A(x)t} \right\| \leq m^2 k_4 e^{-\lambda t} \tag{A4.4.30}
\]

With (A4.4.27), this implies that \(\| \partial P(x)/\partial x \| \) is bounded by some \(k_5 \geq 0 \).

Bound on \(|\partial x/\partial z| \) and \(|z| \)
On the other hand, using (4.4.9), (4.2.8) and (4.4.12)

\[
\left\| \frac{\partial x}{\partial z} \right\| < 1 + \xi(x) < 2
\]

and \(|z| \leq c_1 (l_{av} + \xi(x) k_1 + k_2) \tag{A4.4.31} \)

Using these results in (A4.4.25), and noting the fact that, for all \(y, z \in \mathbb{R} \).
\[\epsilon |z| |y| \leq \frac{1}{2} (e^{k_3/2} |z|^2 + e^{k_3/2} |y|^2) \]
(A4.4.32)

it follows that

\[\dot{v}_i(z, y) \leq -\epsilon \left[\alpha_3 - \xi(\epsilon) k_1 a_4 - e^{k_3/2} \frac{k_2 a_4}{2} - 2 e^{k_3/2} k_3 a_2 \right] |z|^2 \]
\[- \frac{\alpha_2}{p_2} q_1 - 2 \epsilon l_4 a_2 - e^{k_3/2} \frac{k_2 a_4}{2} - 2 e^{k_3/2} l_3 a_2 \]
\[+ 2 \epsilon \frac{\alpha_2}{p_2} k_p h \left(l_{eq} + \xi(\epsilon) k_1 + k_2 \right) |y|^2 \]
\[:= -2 \epsilon \alpha_2 \alpha(\epsilon) |z|^2 - q(\epsilon) |y|^2 \]
(A4.4.33)

Note that, with this definition, \(\alpha(\epsilon) \to \frac{1}{2} \frac{\alpha_3}{\alpha_2} \) as \(\epsilon \to 0 \), while

\(q(\epsilon) \to \frac{\alpha_2}{p_2} q_1 \).

Let \(\epsilon \leq \epsilon_1 \) be sufficiently small that \(\alpha(\epsilon) > 0 \) and \(2 \epsilon \alpha_2 \alpha(\epsilon) \leq q(\epsilon) \). Then

\[\dot{v}_i(z, y) \leq -\epsilon \alpha(\epsilon) v_i(z, y) \]
(A4.4.34)

so that the \(z, y \) system is exponentially stable with rate of convergence \(\epsilon \alpha(\epsilon) \) (\(v_i \) being bounded above and below by the square of the norm of the state). The same conclusion holds for the \(x, y \) system, given the transformation (4.4.9), with (4.4.10). Also, for \(\epsilon, h_0 \) sufficiently small, all signals are actually guaranteed to remain in \(B_6 \) so that all assumptions are valid. \(\square \)

Auxiliary Lemmas for Section 6.2

Lemma 6.2.1

Consider the least squares identification algorithm described by (6.2.8), (6.2.9) with the sequence of resetting times \(0, t_1, t_2, \ldots \), that is

\[\phi = -P \dot{x} \]
(A6.2.1)

\[\frac{d}{dt} (P^{-1}) = \dot{w} \dot{x} \]
(A6.2.2)

Proof of Lemma 6.2.1

Note that for \(\epsilon \neq 0, t_1, t_2, \ldots \)

\[\frac{d}{dt} (P^{-1} \phi) = 0 \]
(A6.2.6)

Thus

\[P^{-1}(t_i^-) \phi(t_i) = P^{-1}(t_{i-1}^-) \phi(t_{i-1}) \]
(A6.2.7)

so that

\[\phi(t_i) = k_0 P(t_i^-) \phi(t_{i-1}) \]
(A6.2.8)

and, with (A6.2.4)

\[|\phi(t_i)| \leq \left(\frac{k_0}{k_0 + \alpha_1} \right)^i |\phi(t_{i-1})| \]
(A6.2.9)

Recursion on (A6.2.9) yields (A6.2.5).

Comments

If \(\alpha_1 = 0 \), the lemma shows that \(\phi(t_i) \) is bounded. If \(\alpha_1 > 0 \) and the sequence \(t_i \) is infinite, \(\phi(t_i) \to 0 \) as \(i \to \infty \). Further, if the intervals \(t_{i+1} - t_i \) are bounded, then \(\phi(t_i) \to 0 \) exponentially. \(\square \)

Lemma 6.2.2

Consider the following linear systems

\[\dot{z}_0 = Az_0 + br \]
(A6.2.10)

\[\dot{z} = (A + \Delta A(t))z + (b + \Delta b(t))r \]
(A6.2.11)

with \(A \) stable and \(\Delta A, \Delta b \) both bounded and converging to zero as
If \(t \to \infty \), the input \(r \) is bounded

Then given \(\epsilon > 0 \), there exists \(k > 0 \) (independent of \(\epsilon \)) and a \(T(\epsilon) \) such that

\[
|z(t) - z_0(t)| \leq \epsilon k \quad \text{for all} \quad t \geq T
\]
(A6.2.12)

Proof of Lemma A6.2.2

From lemma 6.2.1, it follows that \(A + \Delta A(t) \) is asymptotically stable and that there exists \(T_1 \) such that the state transition matrix of \(A + \Delta A(t) \) satisfies

\[
\|\phi(t, \tau)\| \leq m (\exp(-\alpha(t - \tau)))
\]
(A6.2.13)

for some \(m, \alpha > 0 \) and \(t \geq T_1 \). Using this estimate, it is easy to show that \(z(t) \) is bounded. Now, defining the error \(e(t) := z(t) - z_0(t) \), we have that

\[
\dot{e} = Ae + \Delta A z + \Delta b r
\]
(A6.2.14)

For \(T \) sufficiently large, \(\Delta A \) and \(\Delta b \) are arbitrarily small, so that \(e \) may be showed to satisfy (A6.2.12). \(\square \)

Lemma A6.2.3 Solution of the Pole Placement Equation

Consider two coprime polynomials: \(\tilde{d}_p \) monic of order \(n \), and \(\tilde{n}_p \) monic of order \(n - 1 \). Let \(k_p \) be a real number.

Then given an arbitrary polynomial \(\tilde{d}_c(s) \) of order \(2n - 1 \), there exist unique polynomials \(\tilde{n}_c \) and \(\tilde{d}_c \) of order at most \(n - 1 \) so that

\[
\tilde{n}_{c} k_{p} \tilde{n}_{p} + \tilde{d}_{c} \tilde{d}_{p} = \tilde{d}_{cl}
\]
(A6.2.15)

Proof of Lemma A6.2.3

Since \(k_p \tilde{n}_p \) and \(\tilde{d}_p \) are coprime and of order \(n - 1, \), respectively, there exist polynomials \(\tilde{u}, \tilde{v} \) of degree at most \(n, n - 1 \), respectively so that

\[
\tilde{u} \tilde{k}_p \tilde{n}_p + \tilde{v} \tilde{d}_c \tilde{d}_p = \tilde{d}_{cl}
\]
(A6.2.16)

Thus, we see that

\[
\tilde{u} \tilde{d}_{cl} k_p \tilde{n}_p + \tilde{v} \tilde{d}_c \tilde{d}_p = \tilde{d}_{cl}
\]
(A6.2.17)

Further, we may modify (A6.2.17) to

\[
(u \tilde{d}_{cl} - \tilde{q} \tilde{d}_p) k_p \tilde{n}_p + (\tilde{v} \tilde{d}_c + \tilde{q} k_p \tilde{n}_p) \tilde{d}_p = \tilde{d}_{cl}
\]
(A6.2.18)

for an arbitrary polynomial \(\tilde{q} \). Let

\[
\tilde{n}_c := \tilde{u} \tilde{d}_{cl} - \tilde{q} \tilde{d}_p
\]

\[
\tilde{d}_c := \tilde{v} \tilde{d}_c + \tilde{q} k_p \tilde{n}_p
\]

(A6.2.19)

Since \(\tilde{d}_p \) is of order \(n \), we may choose \(\tilde{q} \) so that \(\tilde{n}_c \) is of order \(\leq n - 1 \)

(for instance, as the quotient obtained by dividing \(\tilde{u} \tilde{d}_{cl} \) by \(\tilde{d}_p \)). Then, \(\tilde{d}_c \)

is constrained to be of order \(\leq n - 1 \), since the other two polynomials in

(A6.2.18), that is \(\tilde{n}_c k_p \tilde{n}_p \) and \(\tilde{d}_c \), are of order \(\leq 2n - 1 \).

It is useful to note that if

\[
\tilde{d}_c = d_{2n} s^{2n-1} + \cdots + d_1
\]

\[
\tilde{d}_p = s^n + \beta_n s^{n-1} + \cdots + \beta_1
\]

\[
k_p \tilde{n}_p = \alpha_{n-1} s^{n-1} + \cdots + \alpha_1
\]

\[
\tilde{n}_c = \alpha_{n} s^{n-1} + \cdots + a_1
\]

\[
\tilde{d}_c = b_n s^{n-1} + \cdots + b_1
\]

(A6.2.20)

then the linear equation relating the coefficients of \(\tilde{n}_c, \tilde{d}_c \) to those of \(\tilde{d}_{cl} \)

\[
\begin{bmatrix}
\alpha_1 & 0 & \cdots & 0 & 0 & 0 & \beta_1 & 0 & \cdots & 0 & 0 \\
\alpha_2 & \alpha_1 & \cdots & 0 & 0 & 0 & \beta_2 & \beta_1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\alpha_{n-1} & \alpha_{n-2} & \cdots & \cdots & \alpha_1 & 0 & \beta_{n-1} & \beta_{n-2} & \cdots & \beta_1 & 0 \\
\alpha_n & \alpha_{n-1} & \cdots & \cdots & \alpha_2 & \alpha_1 & \beta_n & \beta_{n-1} & \cdots & \beta_2 & \beta_1 \\
0 & \alpha_n & \cdots & \cdots & \alpha_3 & \alpha_2 & 1 & \beta_n & \cdots & \beta_3 & \beta_2 \\
0 & 0 & \cdots & \cdots & \alpha_4 & \alpha_3 & 0 & 1 & \cdots & \beta_4 & \beta_3 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \alpha_n & 0 & 0 & \cdots & 1 & \beta_n & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & \beta_1 & 0 \\
\end{bmatrix}
\]
(A6.2.21) is of the form $A(\theta^*)\theta_c^* = d$ where θ^* is the nominal plant parameter, and θ_c^* the nominal controller parameter. □

REFERENCES

References

Sastry, S., “Model-Reference Adaptive Control—Stability, Parameter
Convergence, and Robustness,” *IMA Journal of Mathematical

Sastry, S., & A. Isidori, “Adaptive Control of Linearizable Systems,”
Electronics Research Laboratory Memo No. M87/53, University of
California, Berkeley, California, 1987.

Sethna, P.R., “Method of Averaging for Systems Bounded for Positive

for Multivariable Systems,” Tech. Rept. 8111, Center for Syst. Sci.,
Yale University, New Haven, Connecticut, 1982.

Singh, R.P., & K.S. Narendra, “Prior Information in the Design of Mul-
tivariable Adaptive Controllers,” *IEEE Trans. on Automatic

Singh, S. N., & W.J. Rugh, “Decoupling in a Class of Nonlinear Systems
by State Variable Feedback,” *J. Dyn. Syst. Measur. and Control,

Well-Known Class of Adaptive Filters,” *Proc. of the IEEE*, Vol. 64,

Staff of the Flight Research Center, “Experience with the X-15 Adaptive
Flight Control System,” NASA Technical Note NASA TN D-6208,

Tomizuka, M., “Parallel MRAS Without Compensation Block,” *IEEE
Trans. on Automatic Control*, Vol. AC–27, no. 2, pp. 505–506,
1982.

Tsyakin, Ya.Z., *Adaptation and Learning in Automatic Systems*,

Tsyakin, Ya.Z., *Foundations of the Theory of Learning Systems*,

Unbehauen, H. (Ed.), *Methods and Applications in Adaptive Control*,

Vidyasagar, M., *Control System Synthesis: A Factorization Approach*,

Vidyasagar, M., & A. Vannelli, “New Relationships Between Input-
Output and Lyapunov Stability,” *IEEE Trans. on Automatic

References

Volosov, V.M., “Averaging in Systems of Ordinary Differential Equa-
tions,” *Russian Mathematical Surveys*, Vol. 17, no. 6, pp. 1–126,
1962.

Whitaker, H.P., “An Adaptive System for Control of the Dynamic Per-
formance of Aircraft and Spacecraft,” Paper no. 59-100, Institute of
the Aeronautical Sciences, 1959.

Widder, D.V., *An Introduction to Transform Theory*, Academic Press,

Wittenmark, B., & K.J. Astrom, “Practical Issues in the Implementation

Wolovich, W.A., “A Division Algorithm for Polynomial Matrices,”
1984.

Adaptive control, 1
model reference, 5, 99, 103, 286
direct, 9, 111
input error, 111
output error, 118
indirect, 9, 14, 103, 123, 267, 274
multivariable, 277, 305
of nonlinear systems, 294, 307
of robot manipulators, 320
parallel, 6
parametric, 1
series, high gain, 5
universal theory of, 327
using M.I.T. rule, 8, 12
Adaptive pole placement, 129, 272
Algorithms
identifier with normalized
gradient, 59
identifier with normalized least
squares and covariance
resetting, 63
indirect adaptive control, 125
input error direct adaptive
control, 113, 290
model reference identifier, 80
output error direct adaptive
control, 119
output error direct adaptive control,
relative degree 1, 122
Autocovariance, 40
Autonomous, 20
Averaging, 158
Averaging, instability analysis, 236
mixed time scales, 183, 186
nonlinear, 164, 192
one time scale, 159, 166
two time scales, 162, 179
BIBS stability, 130
Bursting phenomenon, 233
Certainty equivalence principle,
8, 124, 268
Class K, 25
Column reduced, 280
Computed torque, 321
Connectionism, 329, 330
Controllable canonical form, 55
Convergence function, 167
Convergence, of gradient algorithms
with SPR error equation, 85
of the identifier, 71, 75, 270
of the input error direct adaptive
control, 154
of the indirect adaptive control,
155
of the output error direct adaptive
control, 155
Coprime, left, 279
Corollaries

Corollary 1.2.2, 19
Corollary 3.6.3 Properties of
Regular Signals, 140

Covariance, 62
propagation equation, 62
resetting, 63
windup, 62

Cross correlation, 43, 189
Cross spectral measure, 44

Decadzone, 251
relative, 251, 252

Diophantine equation, 129, 272
Divisor, common right, 278
greatest common right, 278

Dual control, 10, 249, 325

Equation error identifier, 53

Equilibrium point, 21
asymptotically stable, 24
exponentially stable, 24, 305
stable, 23
uniformly asymptotically stable, 24
uniformly stable, 23
unstable, 237

Error
augmented, 119, 315
control, 133
equation, linear, 48, 58
equation, modified strictly
positive real, 84
equation, strictly positive real, 82
identification, 51, 57
input, 102, 111, 114
output, 7, 76, 100, 111, 118
parameter, 57, 100
positive real, 82
tuned, 241, 242

Expert control, 328

Factorization approach to controller
design, 274

Fraction, left, 278
left coprime, 279
right, 278
right coprime, 279

Gain, adaptation, 7, 48, 58

det, 104, 283
scheduling, 4, 12
Generalized harmonic analysis, 39
Gradient algorithm, 7, 48, 58,
121, 123, 261
normalized, 58
with projection, 59, 126

Hermite normal form, 284
Hurwitz, 52
Hyperstate, 10

Identifiability condition, 15, 73, 262
Identification, 1, 45, 100
frequency domain approach, 45
model reference, 50, 76
structural, 1, 257, 258
Index, controllability, 280
observability, 281
Information matrix, 177, 269
Initial conditions, 57, 65, 113
Input saturation, 117
Instability, slow drift, 233, 236
due to bursting, 233
high gain identifier, 236
Interactor matrix, 282
Kalman filter, 61
Leakage term, 253
Learning, 10, 329

Least Squares Algorithm, 48, 61, 261
normalized, 62
with forgetting factor, 62
with covariance resetting, 63

Lemmas
Lemma 1.2.1 Barbalat’s Lemma, 19, 23
Lemma 1.4.2 Bellman Gronwall
Lemma, 23
Lemma 2.5.2 Uniform Complete
Observability under
Output Injection, 73
Lemma 2.6.2 Kalman-
Yakubovich-Popov Lemma, 83
Lemma 2.6.6 PE and L_2 Signal, 86
Lemma 2.6.7 PE through LTI
Systems, 86
Lemma 3.6.1 Input/Output L_p
Stability, 139

Lemma 3.6.2 Output/Input L_p
Stability, 139
Lemma 3.6.4, 141
Lemma 3.6.5 Swapping Lemma, 141
Lemma 3.6.6 Small Gain
Theorem, 142

Lemma 4.2.1 Approximate Integral
of a Zero Mean Function, 168
Lemma 4.2.2 Smooth Approximate
Integral of a Zero Mean
Function, 169

Lemma 4.2.3 Perturbation
Formulation of Averaging, 170
Lemma 4.2.4 Perturbation
Formulation of Averaging—
Two Time Scales, 184

Lemma 6.1.2 Persistence of
Excitation under
Perturbation, 265

Lemma 6.1.3, 266
Lemma 6.2.1, 269
Lemma 6.2.2 Convergence of the
Identifier, 270

Lie, bracket, 303
derivative, 295
Linear, 20
Linearizing control, 295
decoupling, 293

Lipschitz, 21

L_p spaces, 18
extended, 18
Lyapunov equation, 39
lemma, 38
redesign, 12
stability, 23
two, 25

Matching equality, 106, 288
Mean value, 167
Measurement noise, 216
MIMO systems, 277, 305, 320, 326
poles and zeros, 279
Minimum phase, 52
nonlinear system, 299, 302
Model signals, 134
Möbius, 52
Neural networks, 330
Nominal plant, 214

Nonlinear, 20
Normal form, for nonlinear systems,
302
Norms, 18

Observer, 56, 117

Parameter, error, 12, 48, 109
nominal, 11, 47, 51, 100, 109
tuned, 242
variation, 2, 251

Parameterization, 53, 121, 277
Persistency of excitation, (PE), 15, 72,
154-155, 175, 190, 221, 228,
248, 265

Piecewise continuous, 20
Polynomial matrix division, 281
Positive, semi-definite matrices, 19
definite matrices, 19
definite functions, 25
Positive real (PR), 82
Prefiltering, 127, 292
Projection, 59
Prior information, 250, 257
Proper, transfer function, 52

Propositions
Proposition 1.4.1, 21
Proposition 1.5.3 Uniform
Asymptotic Stability of
LTV Systems, 33
Proposition 1.5.4 Exponential
Stability of LTV Systems, 34
Proposition 1.5.5 Exponential and
Uniform Asymptotic Stability, 34

Proposition 1.6.2 Linear Filter
Lemma, 42
Proposition 1.6.3 Linear Filter
Lemma—Cross Correlation, 42
Proposition 2.4.6, 70
Proposition 2.6.1, 77
Proposition 2.7.1 PE and
Autocovariance, 81

Proposition 3.2.1 Matching Equality,
106
Proposition 3.3.1 Fundamental Identity, 114
Proposition 6.1.1, 262
Proposition 6.3.1 Polynomial Matrix Division, 282
Proposition 6.3.2 Interactor Matrix and Hermite Normal Form Equivalence, 284
Proposition 6.3.3 MIMO Matching Equality, 288
Proposition 7.2.1 Bounded Tracking in Minimum Phase Nonlinear Systems, 304
Proposition 7.3.2 Properties of the Identifier, 316
Rate of convergence, 25, 75, 175, 177, 198, 205, 225, 261
Recursive, 1, 46, 49
Reference model, 50, 99, 286, 307
Regressor, 58
filtering, 253
Regular signals, 70
Relative degree, 52
strong for nonlinear systems, 300
Robust control, nonadaptive, 211
Robust identification, 248
Robustness, 209, 214
non-adaptive, 221
to output disturbances, 226
to unmodeled dynamics, 229
Rohrs examples, 215
Row reduced, 280
Rule based control, 328
expert controller design, 328
Self-tuning, 14
Sensitivity, 7, 212
Slow adaptation, 254
(see Averaging)
Slow drift instability, 233, 236
Solutions, existence, 21, 143
Spectral line, 41
Spectral measure, 41
Stability (see Equilibrium)
family of matrices, 183
indirect adaptive control, 151, 266
input error direct adaptive control, 149
of adaptive identifier using factorization approach, 277
of adaptive pole placement, 273
of the identifier, 69
output error direct adaptive control, 143
Stabilizing compensator, 275
State, fast, 162
generalized, 56, 117
slow, 162
State-variable filters, 117
State transition matrix, 33
Stationary, 40
Steepest descent, 58
Strictly positive real (SPR), 52, 82
Strictly proper transfer functions, 52
Sufficient richness, 92
Theorems
Theorem 1.4.3 Basic Theorem of Lyapunov, 26
Theorem 1.5.1 Converse Theorem of Lyapunov, 28
Theorem 1.5.2 Exponential Stability Theorem, 31
Theorem 1.5.6 Exponential Stability of LTV Systems, 36
Theorem 1.5.7 Lyapunov Lemma, 38
Theorem 2.4.1 Linear Error Equation with Gradient Algorithm, 64
Theorem 2.4.2 Linear Error Equation with Normalized Gradient Algorithm, 64
Theorem 2.4.3 Effect of Initial Conditions and Projection, 65
Theorem 2.4.4 Linear Error Equation with Normalized LS Algorithm and Covariance Resetting, 67
Theorem 2.4.5 Stability of the Identifier, 69
Theorem 2.4.7 Stability of the Identifier—Unstable Plant, 71
Theorem 2.5.1 PE & Exponential Stability, 73
Theorem 2.5.3 Exponential Convergence of the Identifier, 75
Theorem 2.6.3 SPR Error Equation with Gradient Algorithm, 84
Theorem 2.6.4 Modified SPR Error Equation with Gradient Algorithm, 85
Theorem 2.6.5 Exponential Convergence of Gradient Algorithms and SPR Error Equations, 85
Theorem 2.7.2 PE and Sufficient Richness, 92
Theorem 2.7.3 Exponential Parameter Convergence and Sufficient Richness, 93
Theorem 3.7.1 Stability Proof Input Error Direct Adaptive Control, 143
Theorem 3.7.2 Stability Proof Output Error Direct Adaptive Control, 149
Theorem 3.7.3 Stability Proof—Indirect Adaptive Control, 151
Theorem 3.8.1, 155
Theorem 3.8.2, 155
Theorem 4.2.4 Basic Averaging Theorem, 172
Theorem 4.2.5 Exponential Stability Theorem, 173
Theorem 4.4.2 Basic Averaging Theorem, 185
Theorem 4.4.3 Exponential Stability Theorem, 185
Theorem 5.3.1 Small Signal I/O Stability, 221
Theorem 5.3.2 Robustness to Disturbances, 228
Theorem 5.5.3 Robustness to Unmodeled Dynamics, 230
Theorem 5.5.1 Instability Theorem for One Time Scale Systems, 237
Theorem 5.5.2 Instability Theorem for Two Time Scale Systems, 239
Theorem 6.2.3 Asymptotic Stability of an Indirect Adaptive Scheme, 271
Theorem 6.2.4 Asymptotic Stability of the Adaptive Pole Placement Algorithm, 273
Theorem 6.2.5 Asymptotic Stability of the Adaptive Identifier using the Factorization Approach, 277
Theorem 7.3.1 Adaptive Tracking, 310
Theorem 7.3.3 Basic Tracking Theorem for SISO Systems with Relative Degree Greater than 1, 316
Tracking, 304, 310, 316
adaptive, 310, 316
Uncertainty, 209
additive, 211
multiplicative, 211
structured, 209, 213, 263
unstructured, 209, 213
Uniformly completely observable (UCO), 35
Universal controller, 328
Unmodeled dynamics, 216
Unimodular, 279
Update law, 58
hybrid update, 254
modifications, 251
regressor vector filtering, 253
slow adaptation, 254
\(\sigma \)-modification, 253
X-15 aircraft, 6

Index for One Time Scale Systems, 237
Theorem 5.5.2 Instability Theorem for Two Time Scale Systems, 239
Theorem 6.2.3 Asymptotic Stability of an Indirect Adaptive Scheme, 271
Theorem 6.2.4 Asymptotic Stability of the Adaptive Pole Placement Algorithm, 273
Theorem 6.2.5 Asymptotic Stability of the Adaptive Identifier using the Factorization Approach, 277
Theorem 7.3.1 Adaptive Tracking, 310
Theorem 7.3.3 Basic Tracking Theorem for SISO Systems with Relative Degree Greater than 1, 316
Tracking, 304, 310, 316
adaptive, 310, 316
Uncertainty, 209
additive, 211
multiplicative, 211
structured, 209, 213, 263
unstructured, 209, 213
Uniformly completely observable (UCO), 35
Universal controller, 328
Unmodeled dynamics, 216
Unimodular, 279
Update law, 58
hybrid update, 254
modifications, 251
regressor vector filtering, 253
slow adaptation, 254
\(\sigma \)-modification, 253
X-15 aircraft, 6