
Flexible Beam

Objectives

The objective of this lab is to learn about the challenges posed by
resonances in feedback systems. An intuitive understanding will be
gained through the manual control of a flexible beam resembling a
large space robotic arm. Control design will be performed in the
frequency domain using a lead controller. A notch filter will be
incorporated in the feedback loop in order to reduce the excitation
of resonances.

Introduction

Systems with lightly-damped, complex poles (resonances), are encountered in many applica-
tions. An example is a large robotic arm in space, whose transversal dimensions are made
small to reduce weight. The arm will bend and oscillate if moved rapidly. In a computer disk
drive, a read/write head is attached to the end of a small, rigid structure which is rotated
rapidly to access various tracks. When the head is positioned within fractions of microns, even
such a rigid structure behaves like a flexible structure.

θ

φ

Figure 1: Flexible Beam



The diagram of the flexible beam is shown on Fig. 1. The angle of the beam at the shaft
is denoted θ, while φ is the angle at the tip. If there was no flexibility, the two angles would
be equal. Experimental data was collected on a flexible beam of length 0.4m. Fig. 2 shows
the frequency response that was measured from the motor current to the angular acceleration
of the shaft, while Fig. 3 shows the response measured from the motor current to the angular
acceleration of the tip. The acceleration at the shaft was obtained by measuring the position
with an encoder (and multiplying the frequency response by −ω2 to obtain the acceleration),
while the acceleration at the tip was obtained with an accelerometer. The plots show the
experimental data, as well as approximate fits obtained with fourth-order models (as dashed
lines).
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Figure 2: Frequency response of the flexible beam from motor current to shaft angular accel-
eration

The approximate models shown on the plots are given by

s2Θ(s)

I(s)
=

kθ(s− z1)(s− z∗1)(s− z2)(s− z∗2)
(s− p1)(s− p∗1)(s− p2)(s− p∗2)

s2Φ(s)

I(s)
=

kφ(s− z3)(s− z4)(s− z5)(s− z6)
(s− p1)(s− p∗1)(s− p2)(s− p∗2)

(1)
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Figure 3: Frequency response of the flexible beam from motor current to tip angular accelera-
tion

where p1 = −3 + 74j, p2 = −3 + 215j, z1 = −0.07 + 18j, z2 = −0.07 + 180j, z3 = 100,
z4 = −120, z5 = 200, and z6 = −300 (note that the poles are very lightly damped). The input
variable is the current in the motor, measured in A, and the angles θ and φ are measured in
radians. The constants kθ and kφ are such that the DC gains of the transfer functions are
equal, with

kp =

�
s2Θ(s)

I(s)

�

s=0

=

�
s2Φ(s)

I(s)

�

s=0

= 5.5 (2)

The equality for θ and φ follows from the fact that there is no bending of the beam near zero
frequency. For low frequencies, the transfer functions are therefore approximately given by

Θ(s)

I(s)
≃ Φ(s)

I(s)
≃ kp
s2

(3)

This approximation of the system is the double integrator encountered with the ball and beam.
The feedback design is more difficult than for the ball & beam, because of additional poles
close to the jω-axis, and because of zeros close to the jω-axis and in the right half-plane.
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Figure 4: Bode plots of lead controller

Manual control

The simulation file is called flex.m. You should play with the simulation and move the beam
from the 45◦ line to the −45◦ line. You will encounter two difficulties: the 1/s2 behavior
and the flexibility of the beam. Resonances can be avoided by moving the beam slowly, but
performance will be unimpressive. It can be enlightening (and fun) to “excite” the resonances
by applying commands in the same frequency range as the flexible modes. The beam will bend
to large angles. Once this mechanism is understood, you may return to the task of rapidly
moving the beam from side to side without exciting such resonances.

Note that the simulation was implemented differently from the previous ones. The continuous-
time model was discretized assuming a sampling period of 200Hz. Since the program runs at a
rate of approximately 20Hz, the visualization slows the dynamics by a factor of 10. This result
is helpful, because the dynamics of the actual system are too fast to be controlled manually.

Lead controller design

The objective is to design a lead controller

C(s) =
I(s)

Φref(s)− Φ(s)
= kc

(s+ b)

(s+ a)
(4)

Such a controller was designed for a phase-locked loop in the advanced PLL lab. Here, the
design will be performed in the frequency domain. The motor current i is the control signal,
and the tip angle φ is the output to be regulated, with a reference value φref .

The Bode plots of the lead controller are shown in Fig. 4. In the notes for the course, the
variables are shown tosatisfy the following constraints

ωp =
√
ab

mp = kc

�
b

a
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Figure 5: Bode plots of plant and lead controller (only one resonant mode shown)

a

b
=

1 + sin(φp)

1− sin(φp)
(5)

To determine the controller parameters, we consider an approximate model of the plant
with the two poles at the origin and the first two resonant modes. The tranfer function from
i to φ is then

P (s) =
Φ(s)

I(s)
=
kp
s2
· ω2n
s2 + 2ζωns+ ω2n

(6)

where kp = 5.5, ωn = |p1|, ζ = −Re(p1)/ |p1|, and p1 = −3 ± j73. Fig. 5 shows the Bode
plots of the loop transfer function for the approximate plant and the lead compensator. The
magnitude plot shows ωp as the crossover frequency, a condition that is to be enforced by
proper choice of the parameters. Assuming that ωn ≫ ωp, show using (5) that

|C(jωp)P (jωp)| ≃
kckp
ω2p

�
b

a

|C(jωn)P (jωn)| =
kckp
2ζω2n

(7)

Then, find the values of the controller parameters kc, a, and b such that

φp = 60◦, |C(jωp)P (jωp)| = 1, |C(jωn)P (jωn)| = 0.1 (8)

The idea is that the first two conditions will ensure a crossover frequency at ωp and a phase
margin of 60◦. The third condition will yield a gain margin of 10, given that the phase crossover
frequency will be close to ωn.



Using the parameters of the lead controller, plot the step response of the closed-loop system
(function step in Matlab) and the Bode plots with the gain and phase margins (function
margin in Matlab). Make sure to use the complete plant transfer function for this step, not
the approximate one. The feedback system may be assembled using the functions series and
feedback in Matlab, if desired. Also compute the locations of the closed-loop poles (function
pole or roots in Matlab).

Automatic control

Design #1

Implement the controller in the simulation with files flexc.m and flexcinit.m. A discrete-
time equivalent of the control system should be computed, as was done in the previous lab.
Discretization should be based on the 200Hz sampling frequency, so that visualization will
show the system at a rate slowed down by a factor of 10. Plot the responses of i, θ, φ, and
φ − θ to step inputs. Let φref switch between 45◦ and −45◦ every 2 seconds, and record the
data for 6 seconds (which will take 60 seconds in the real-time simulation). The visualization
should show a slow response, with a large overshoot, due to the low frequency zero at s = −b.
If you reduce the gain margin by increasing |C(jωn)P (jωn)|, you will find that the crossover
frequency increases and that the response speeds up, but oscillations are observed due to
excitation of the beam’s flexible modes.

Design #2

Improve the design by cascading the lead/lag controller with a notch filter and by prefiltering
the reference input, so that

I(s) = C(s)Cnotch(s) (CF (s)Φref (s)− Φ(s)) (9)

where C(s) is the lead controller considered earlier. Let the prefilter be

CF (s) =
1.2b

s+ 1.2b
(10)

where b is the zero of the compensator. Let the notch filter be

Cnotch(s) =
s2 + ω2n

s2 + 2ωns + ω2n
(11)

where ωn is the natural frequency of the first resonant mode. The prefilter will eliminate the
overshoot, and the notch filter will allow you to increase the crossover frequency and, as a
result, the speed of response.



Re-design the lead controller with ωp = 12 rad/s, keeping the condition that φp = 60◦ and
the crossover frequency condition

kckp
ω2p

�
b

a
= 1 (12)

Check the properties of this re-designed controller in combination with the prefilter, notch
filter, and plant transfer function: plot the step response, the Bode plots with gain and phase
margins, and compute the values of the closed-loop poles. Implement the controller in the
simulation, and plot the responses of i, θ, φ, and φ − θ to step inputs in φref . Compare the
responses to those of the previous controller. Show your code and demonstrate the real-time
operation to the TA.

Report at a glance

Be sure to include:

• Description of challenges and strategies for manual control.

• Design and evaluation of the lead controller, with plots of the step response, Bode plots
with gain and phase margins, and values of the closed-loop poles. Responses of i, θ, φ,
and φ− θ to step inputs of φref in the simulation.

• Design and evaluation of the lead controller with notch filter and prefilter, with plots of
the step response, Bode plots with gain and phase margins, and values of closed-loop
poles. Responses of i, θ, φ, and φ− θ to step inputs of φref in the simulation.

• Observations and comments.

• Listing of flexc.m and flexcinit.m.


