Problem 1: A feedback amplifier employing series-series feedback is shown in Fig. 1, where the feedback network is contained within the dotted box. The component values are $R_s = 1$ kΩ, $R_i = 7$ kΩ, $R_o = 3$ kΩ and $R_L = 6$ kΩ, and $G_m = 0.1$ A/V for the transconductance amplifier. [16 points]

(a) Calculate the relevant 2-port network parameters for the feedback network. [7]

(b) Calculate the open-loop gain of the amplifier (I_{out}/V_s) with the loading of the feedback network, source, and load included. [4]

(c) Use the results from the previous parts to calculate the closed-loop with feedback, $A_f = I_{out}/V_s$, as denoted in Fig. 1. [3]

(d) If G_m increases by 5%, by approximately how much (as a percentage) does the closed-loop gain (A_f) change? [2]

Figure 1: Series-Series feedback amplifier.
Problem 1 (cont’d)
Problem 2: We are interesting in adding a feedback network to an amplifier with an open loop gain that can be expressed as
\[A(s) = \frac{10^6(1+s/10^{10})}{(1+s/10^6)(1+s/10^8)(1+s/10^9)}. \]

[14 points]

(a) Sketch the bode plot for open loop gain \(A(s) \) in the space provided. [6]

(b) Is the system stable for a feedback factor of \(\beta = 10 \)? If so, what is the phase margin? [2]

(c) Suppose we wish to compensate the system (again with a feedback factor of \(\beta = 10 \)) by moving the dominant pole to a lower frequency. What is the new dominant pole frequency required to obtain a phase margin of 45°? [4]

(d) Suppose that a pole is introduced into the feedback network of the compensated system so that \(\beta = \frac{10}{1+s/10^4} \). Is the system still stable, and if so, what is the phase margin? [2]
Problem 2 (cont’d)
Problem 3: We wish to digitize a signal with a full-scale range from $V_A = 0 \text{ V}$ to $V_A = -5 \text{ V}$. We would like the quantization error of the digitized signal to be less than 2.5 mV. [10 points]

(a) How many bits are required for the ADC? [2]

(b) If the ADC is implemented using a dual-slope ADC (as shown in Fig. 2) with $R = 1 \text{ k} \Omega$, $C = 50 \text{ nF}$, and $f_{clk} = 10 \text{ MHz}$, what is the maximum possible value of V_{PEAK}? [4]

(c) Someone lent the ADC to Borat and he left it out in the rain. As a result, the pivot (point N_1) of switch S_1 became rusty and developed additional resistance that appears between the switch and resistor R. Will this affect the accuracy of the ADC, and if so, will it increase or decrease the digital read-out? [2]

(d) Assume the same premise as part (c), except the rust on switch S_1 has developed at contact N_2 and the additional resistance appears between the switch and V_{REF}. Will this affect the accuracy of the ADC, and if so, will it increase or decrease the digital read-out? [2]

Figure 2: Dual-slope ADC.
Problem 3 (cont’d)
Problem 4: Who was recently elected to serve a second term as Prime Minister of Canada? [2 points]

(a) Jacques-François Poutine.
(b) Sarah Palin.
(c) Stephen Harper.
(d) Who cares, the United States is the capital of the world! U-S-A, U-S-A!!