Now, given that we care about the effects of the signal component:

\[G \rightarrow \text{only signal component} \rightarrow D \leftarrow \text{id. (only signal component)} \]

open circuit
since no low
freq. current
caused

- In analyzing a circuit like this, for \(V_{gs} = V_{gs} + V_{gs} \),
 - the bias component \(V_{gs} \) is used to calculate the component values for the small signal model, which is often used for analyzing how the signal propagates through the system.
 - to find \(V_{d} \) we must use \(I_{d} \) expression which takes channel length modulation into account:

\[
V_{d} = \left[\frac{\partial I_{d}}{\partial V_{gs}} \right]^{-1} \quad \text{(evaluated at } V_{gs} \text{ bias point)}.
\]

\[= \frac{1}{2wLd} \quad \text{bias level of drain current} \]

- Single Stage Mos Amplifier:
 - Common-Source:
 - most commonly used
 - good for getting gain

- Common-Gate:
 - useful for having a constant input impedance across frequency
 - useful characteristics for wideband amplifier

- Common-Drain (Sane-Follows):
 - often used as an output stage due to low output impedance
 - no voltage gain, but can provide current gain
Let's analyze one of these cases:

- General Form of CS amplifier (pg 307 in text):

- C_1, C_2, C_s are coupling capacitors since they allow the signal to pass.
- It is assumed that the source is AC coupling to appear as shorts at the signal frequency and open at DC.
- For a capacitor $Z = \frac{1}{j\omega C}$, $Z \to 0$ as $\omega \to \infty$.
- Also called "blocking" capacitors, on the block, dc signal cd allows the bias conditions to be met.

- R_s is output impedance of the drove source (not part of amplifier).
- R_b is a large resistance included to set DC level of the gate for driving.
- Often not necessary, eq if being driven by another transistor.
- R_b acts as a local resistor to provide a voltage output based on the drain current (I_D) induced by the input voltage swing.
- R_i is the input impedance of another thermal amplifier it's driving (not part of the amplifier).

To analyze:

1. Examine bias conditions to determine the values of the small signal parameters (g_m & r_o).
 - Simple here, because biasing is provided by a current source.
 - Need to check V_{ds} to ensure that M_1 is operating in the SAT. region:
 - Assume SAT. region, calculate V_{ds} using $I_D = \mu C_W \frac{V_{gs} - V_T}{2}$
 - Now, $V_{ds} = (V_{dd} - I_B R_b) - (-V_{ds})$
 - As long as $V_{ds} > V_{ds} - V_T$, device will be in SAT. region.

 - Use $g_m = \sqrt{2} \mu C_W \frac{V_{ds}}{I_D}$ and $r_o = \frac{1}{g_m}$ constant.

2. Replace transistor with small signal model, replace coupling capacitors with shorts, dc current sources with open circuits, dc voltage sources with small signal grounds:

 ![Small Signal Model Diagram]
Perform standard circuit analysis techniques (KCL or KVL) to determine the gain, etc. (e.g. input impedance, output impedance).

- By inspection, \(V_{gs} = \frac{V_{gs}}{R_{g} + R_{o}} \approx V_{gs} \) if \(R_{o} \gg R_{g} \).

\[V_{at} = -g_{m} \cdot V_{gs} \cdot (\frac{1}{R_{o} || R_{L}}) \]

\[V_{o} \text{ voltage gain} = A_{v} = -g_{m} \cdot (\frac{1}{R_{o} || R_{L}}) \]

- Also define open-circuit voltage gain. \(A_{vo} \approx -g_{m} \cdot R_{o} \)

If \(R_{o} \gg R_{d} \) (often the case), \(A_{vo} \approx -g_{m} \cdot R_{o} \).

This straightforward set of steps can be applied to any of the amplifier configurations to confirm their properties that were mentioned.

- With experience you will know what to reflect and be able to analyze without drawing at the S.S. model each time.

BJT Review

- BJT is similar to MOSFET in that it is used as a voltage-controlled current source.

struct: NPN:

- Several modes of operation, depending on whether each pn junction is forward or reverse biased.

- Most important is "Active" region, where BE is forward biased, BC is reverse biased.

- Current flows in forward biased BE junction - mostly electrons due to doping levels.

- Base is thin so electrons reach BC junction and are swept across by E-field of reverse biased junction.

- Results in a small "leak" leading to a base current which then leads to a much larger collector current.

Aug. 27