\[I_{D1} = \frac{V_{DD} - V_{GS}}{R} \]

- Combine (1) and (2) to find \(V_{GS} \) and \(I_{D1} \).

- Now, \(V_{GS} \) for \(M2 \) = \(V_{GS} \) for \(M1 \), so as long as \(M2 \) has a \(V_{GS} \) high enough to keep it in saturation,

\[I_{D2} = \frac{M_2 \cdot L \cdot W \cdot (V_{GS} - V_{T})^2}{2} \]

\((W/L) \) is very useful for replicating a bias current at different points in a circuit.

- Can plot output current vs. output voltage: \((\text{just } I_{D2} \text{-} V_{GS} \text{ relationship of } M2) \).

\[\text{finite slope due to finite output impedance (} = R_o \text{ of } M2 \text{).} \]

- This has assumed we need to "sink" a current of \(I_{S}\text{eff} \), if we need to "source" that same current, we can use PMOS devices:

- Same circuit can be used with NFETs, although \(I_{S}\text{eff} = I_o \text{ relationship is not as simple due to finite base current.} \)

MOS Differential Pair

- Big reason to use differential amplifier is reduced sensitivity to noise & interference.

- Diff. amps are well-suited for integrated circuits due to good matching between devices.
Operation 1: Common Mode Input Voltage

- Let $V_{o1} = V_{o2} = V_{cm}$

 then, $V_{os1} = V_{os2} = V_{cm} - V_s$

- Current will split equally between M_1 and M_2, $V_{o1} = V_{o2}$
 - prove by assuming this is not true.

- If V_{cm} changes, current will still split equally, no change in differential output voltage $(V_{o1} - V_{o2})$.

Definition: input common mode range: range of V_{cm} over which the pair can operate.

- Limited at high end by M_1, M_2 entering the triode region.
- Limited at the low end by need for adequate voltage across arm source (not a problem for ideal source, but could be for actual mirror).

Operation 2: Differential Mode Input Voltage

- Let $V_{o1} = +V_{id}$, $V_{o2} = -V_{id}$.

 - can see that current flow will no longer split equally, more current will flow in M_1 (reducing V_{o1}) and less in M_2 (increasing V_{o2}).

- What value of V_{id} will cause all the current to flow in one side?

 - at this point, must satisfy eqn: $I = \frac{1}{2} K_n V_d^2 (V_{os1} - V_t)^2$.

 \[(1) \Rightarrow V_{os1} = V_t + \sqrt{2 \frac{I}{K_n} (V_{id})}\]

 - Now, if no current flows in M_2, $V_{os2} = V_t$ (in cutoff).

 - $V_{os2} = V_{o2} - V_s = V_d - \frac{V_{id}}{2} - V_s = V_t$

 \[\therefore V_s = \frac{V_{id} - V_t + V_d}{2}\]
Now, \(V_{0s1} = V_{01} - V_S = \frac{V_{id}}{2} - V_S = \frac{V_{id}}{2} - (\frac{V_{id}}{2} - V_t) = V_{id} + V_t. \)

\[\text{Solve back into (1): } V_{id} + V_t = V_t + \sqrt{\frac{2-V_t}{k_n'(W/L)}} \]

\[\Rightarrow V_{id} = \sqrt{\frac{2-V_t}{k_n'(W/L)}} = \sqrt{V_t - V_{ov}} \text{ (overdrive voltage with current of } \frac{1}{2} \text{)} \]

- If \(V_{id} \) increases beyond this point, we will see no additional change in output voltage.
- Need to operate in range \(-\sqrt{V_t - V_{ov}} \leq V_{id} \leq \sqrt{V_t - V_{ov}} \).

Large Signal Operation

- Derive exact relationship between \(V_{id} \) and \(i_{01}, i_{02} \).
- Gloss over some details, see pages 693–694 in text for full version.

\[
\begin{align*}
V_{0b} + \frac{V_{id}}{2} & \quad \text{(1)} \\
\text{(Vb)} & \quad \text{(2)} \\
\end{align*}
\]

\[i_{01} = \frac{1}{2} k_n' W \left(V_{0s1} - V_b \right)^2 \]

\[i_{02} = \frac{1}{2} k_n' W \left(V_{0s2} - V_b \right)^2 \]

Taking square roots:

\[\sqrt{i_{01}} = \frac{1}{2} k_n' W \left(V_{0s1} - V_b \right) \quad (1) \]

\[\sqrt{i_{02}} = \frac{1}{2} k_n' W \left(V_{0s2} - V_b \right) \quad (2) \]

Now, \(V_{0s1} - V_{0s2} = V_b + \frac{V_{id}}{2} - V_S = (V_b - \frac{V_{id}}{2} - V_S) = V_{id}. \quad (3) \)

Subtract (2) from (1) and subtract (3) to get:

\[\sqrt{i_{01}} - \sqrt{i_{02}} = \frac{1}{2} k_n' W \frac{V_{id}}{L} V_{id}. \quad (4) \]

Also, the current source imposes the constraint, \(i_{01} + i_{02} = I \) \(\text{(5)} \)

- We have 2 equations with 2 unknowns!
- Solve for \(i_{01}, i_{02} \) (details in book).

We find that:

\[i_{01} = \frac{1}{2} + \frac{1}{2} \left(\frac{I}{V_{ov}} \right) \left(\frac{V_{id}}{2} \right) \sqrt{1 - \left(\frac{V_{id}/2}{V_{ov}} \right)^2} \]

\[i_{02} = \frac{1}{2} - \frac{1}{2} \left(\frac{I}{V_{ov}} \right) \left(\frac{V_{id}}{2} \right) \sqrt{1 - \left(\frac{V_{id}/2}{V_{ov}} \right)^2} \]

where \(V_{ov} = \frac{1}{\sqrt{k_n'(W/L)}} \), as before.