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ABSTRACT

In this thesis the placement of antennas on a small satellite’s solar cell is studied. The place-

ment of antennas is carefully investigated by minimizing the total solar cell’s power harvesting

area covered by a patch antenna. Transparent antennas can potentially improve the usage of the

covered area by allowing a percentage of incident solar light through. This work explores the

feasibility of antennas made out of transparent oxides (TCOs) and co-planar electromagnetically

coupled feeds that can be placed on solar cells. TCOs are reviewed and simplified in order to

better understand material properties on antenna design. Skin depth effects are studied in detail

and an empirical equation is introduced to better model skin effects resultant from thin film TCO

depositions. In the second part of the thesis coupled feeds for see-through meshed antennas are

studied. Properties such as antenna gain, co-polarization, efficiency and cross-polarization are

discussed.
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CHAPTER 1

INTRODUCTION

1.1 Transparent Antennas

Satellites have always played an important role in space. Their contributions for space

research, extended global communications and surveillance have been instrumental for the ad-

vancement of the information age. As part of the effort to create this outer space network,

satellites have evolved from simple transmitters to complex systems that incorporate a myriad of

technologies into a single location. Cost and weight are always key issues for successful satellite

deployment. Groups of researchers and budget-tight companies employ smaller and cheaper

satellite solutions that are usually custom made for a specific application. These small satellites,

such as USUsat1, shown in Fig. 1.1, have created a constant demand for cheaper systems that do

more with less [1]. Limitations on the size of these small satellites leave barely enough room for

solar cells, which are necessary to power the satellite. This repeatedly impedes the placement of

other external elements such as antennas. Without the required surface area for topical antennas,

often complex and failure prone antennas that must be deployed in orbit are used. This adds

substantially to cost and labor hours as well as the potential for failure.

Two solutions have arisen to mitigate the difficulty of solar cell and antenna integration. The

first solution entails the placement of a slot antenna on the back side of the solar cell [14]. This

solution has been proven effective if custom built solar cell antennas are assembled for small

satellites, but is not viable if the small satellite is being built from off-the-shelf components. The

second solution suggests the placement of meshed see-through copper antennas, such as the one
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seen in Fig 1.2, on top of the solar cell [21]. See-through meshed antennas are still in the early

research phase, but show some promise as transparent antennas.

This thesis considers another type of transparent antenna that can be integrated on an off the

shelf solar panel. Indium Tin Oxide (ITO) antennas on solar cell panels. ITO antennas have been

used for various types of antenna applications including [8], [12] and [4]. ITO has been shown to

have high optical transparency while maintaining effective RF conductivity [8]. These properties

could potentially make ITO a good candidate for the application of optically transparent antennas

for solar cells, but many of these antennas have failed to meet expectations for efficiency while

retaining transparency. This thesis will analyze the effect of ITO materials on patch antenna

design in Chapter 2. The tradeoff between optical transparency and electrical conductivity will

be evaluated for a wide range of frequencies. Methods to better predict the skin effects on a

patch antenna and their impact on antenna efficiency are also described. The assessment of these

tradeoffs and effect of ITO parameters for antenna design is the first contribution of this thesis.

Another challenge for ITO and meshed patch antenna design is how to feed the antennas.

Soldering a copper feed line to the ITO antenna melts the ITO, making the antenna worthless. A

proximity feed, shown in Fig. 1.3 and described in detail in Chapter 3, is used instead. The full

understanding of that feed and its effects on efficiency gain, polarization and antenna matching

is the second major contribution of this thesis.

It is important to note that the application of transparent antenna design concepts is not

limited to TCOs, but can be applied to other emerging technologies that utilize materials with

lower conductivity values, such as conducting fabrics.
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Figure 1.1. USUsatl - TOROID [1]

Figure 1.2. Meshed see-through copper antenna [16]
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Figure 1.3. Proximity coupled feed for a patch antenna
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1.2 Transparent Antenna Design

1.2.1 ITO (Indium Tin Oxide) Antennas

Previous experiments have been conducted to determine the feasibility of using optically

transparent materials such as ITO for antenna design [2]. Monopole and patch antennas have

been made with ITO [8]. It was found that patch antenna radiators are not as effective or as as

monopole antennas. Efficiency is controlled by how much current runs on the ITO imperfectly

conducting antenna surface. In [8] PIFA (Planar Inverted F Antenna) was found to have a higher

radiation resistance, because it behaves like a cavity and excites a larger current on the whole

patch. The trapezoidal monopole requires less current to be excited on its surface and therefore

is more efficient [8]. None of the previous designs have been placed on a solar cell.

[12], [4] and [8] have found that ITO antennas optical transparency is inversely proportional

to the sheet resistivity and therefore ITO antennas have poor conductivity. This results in a

tradeoff between transparency and efficiency for ITO antennas for solar cell applications. This

tradeoff is evaluated in Chapter 2.

Chemical spray deposition, DC sputtering and RF sputtering are a few of the methods used

for performing ITO deposition [4]. The University of Utah’s Nanofab has a DC sputtering

machine that was used to sputter the ITO antennas on glass substrates similar to solar cells for

this thesis.

1.2.2 Meshed Patch Antennas

An alternative to antennas made of transparent materials are meshed antennas. Although the

optical transparency of meshed antennas is typically lower than ITO antennas, meshed antennas

have higher efficiency and overall gain [21].

Studies have been conducted at Utah State University, and new techniques for improvement of

meshed patch antenna transparency and efficiency have been developed. Utah State University
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researchers have been successful in obtaining 80% transparency and 50% efficiency using the

meshed structure [21].

1.2.3 Integrated Solar Cell Antennas

Integrated solar cell antennas have been developed with great success. They provide virtually

no obstruction or degradation to the solar cell and still are able to maintain high gains and

radiation efficiency [14].

The SOLANT (SOLar ANTennas) design incorporates a slot antenna in the ground plane of

a solar panel [14]. With this design solar panels are able to function at their maximum capacity

because the antenna blocks no light to the solar panel. The SOLANT design was able to achieve

gains of up to 30 dBi.

The integrated slot antenna design requires antennas to be custom fabricated, which is cost

prohibitive for small satellites.

1.3 Feeding Methods for Transparent Antennas

1.3.1 Direct Microstrip Feed

The direct microstrip feed is the oldest and most traditional feeding technique that works

well when the antenna can be printed on a single layer. For patch antenna designs, quarter wave

transformer or inset fed techniques have been developed to provide better matching [2].

These feeding techniques do not work well with meshed antennas. Visible feed lines on top of

solar cells shadow the energy generating cells. Furthermore, the possibility of integrating meshed

printed patch antennas onto the line feed is difficult due to the fragile and unreliable bond of

mesh lines and feed. For the reasons mentioned above, alternative techniques must be employed

for optimally feeding of mesh antennas.
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1.3.2 Coupled Microstrip Feed

An alternative approach to the direct feed described above is using a coupled feed. A passive

feed works with a rectangular patch element that is capacitively or inductively coupled to a

microstrip feed line. The capacitive coupling depends on the dimensions of the patch as well as

the width of the gap between the patch and the feed [2]. At higher frequencies, this arrangement

has very low field coupling and bandwidth.

Proximity fed antennas are a good alternative to more common direct feed methods due to

the absence of direct connection between the antenna and the feed line. This type of coupled

feed mitigates some difficulties between meshed copper bonding and frees up more solar cell area

for increased power efficiency.

1.3.3 Contributions

The major contributions of this thesis is to provide the reader with a better understanding

of transparent conducting oxides (TCOs) so that antenna design tradeoffs can be implemented

and improved upon. The study conducted on Chapter 2 will be published as an invited paper

on the IEEE Antennas and Propagation Magazine. Also a major contribution from Chapter 3

is the implementation of electromagnetically coupled feeds for meshed antennas, this work will

be published on the IEEE Transactions on Antennas and Propagation journal.



CHAPTER 2

TRANSPARENT PATCH ANTENNAS

2.1 Introduction

Transparent conductive materials have been prepared with oxides of tin, indium, zinc and

cadmium [7]. These transparent conducting oxides (TCO) are employed in a wide spectrum of

applications such as solar cells, electromagnetic shielding and touch-panel controls [7]. No-

tably, there has been little commercial application of TCOs in antenna design. Attempts

have been made to create transparent patch antennas for automobile windshields and solar

cells [8][21][12][4][18]. Many papers on this subject express the inability to achieve high gains

(> 2 dB) [4] and reduced efficiencies of microstrip antennas compared to antennas that are not

near a ground plane [8], such as a dipole in free space. Previous transparent antenna research

offers little insight into the use and limitations of TCO antennas in general, and what range of

conductivity and transparency can be expected from today’s materials and how that impacts

antenna performance for different frequency bands. This chapter explores those trade offs and

discusses the implementations for antenna design now and as TCO materials mature.

In order to better understand the importance of these material science constraints and how

they impact transparent antenna design, this chapter also looks at transparent conductors in a

language that can be understood by antenna engineers. In this effort we examine various issues

that plague microstrip patch antenna design using thin film transparent conductors. These design

difficulties include skin depth losses introduced by the requirement of thin TCO depositions for

high optical transparency. Furthermore, ground effect losses present in patch antennas further
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aggravate the loss due to skin effects. Both of these issues coupled with the relatively low

conductivity of TCOs [13], (approximately 8 × 105 S/m for indium tin oxide ITO) can cause

significant increases in surface resistance of the microstrip patch and resultant lower efficiency.

Taking into consideration all of these effects, this work will evaluate 1) the necessary components

and requirements of a transparent material for antenna design, 2) the type of losses associated

with thin film depositions due to ground and skin effect losses in microstrip patch antennas, and

3) design considerations to mitigate antenna surface resistance and improve efficiency. The first

item is addressed by a thorough explanation of TCO material physics, which will illustrate how

to manipulate free electron doping and electron mobility to improve transparency and maximize

conductivity. The second item introduces an empirical equation to approximate surface resistance

due to skin and ground losses. The third item evaluates expected optical transparency and

radiation efficiency of today’s TCOs and those that we may hope to see in the future. It may

also be noted that many of the concepts in this chapter apply to the design of antennas with

other imperfectly conducting materials such as fabric or thread.

2.2 Transparent Conductors

Transparent conductors such as ITO, belong to the family of oxides (In2O3 : Sn) that posses

high optical transparency (> 80% at 550 nm wavelength) and good electrical conductivity (≈ 105

S/m) [13]. These seemingly opposing characteristics of transparent and conducting oxides are

possible through some of the governing laws of modern physics. Before we are able to understand

the science behind transparent conductors, it is necessary to simplify the electron conduction

model through the Drude model. The Drude model [3] is a physics model that attempts to

explain the electron transport properties with the application of kinetic theory. This model

exists under three major assumptions:
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1. Electrons are treated as classical particles within a free-electron approximation. In the absence

of an external electromagnetic field each electron is assumed to move in a straight line. In

the presence of a field each electron is assumed to obey Newton’s law of motion.

2. Electrons move freely only between collisions. These collisions are instantaneous events that

abruptly alter the velocity of an electron, much like colliding balls on a pool table.

3. An electron experiences a collision, resulting in an abrupt change in its velocity, with a

probability per unit time of 1/τ . The time between these two collisions is known as the

mean free path time τ .

In order to accept these Drude model assumptions, the quantum interactions of electrons in

energy bands warrants the adjustment of the electron rest mass me to a new adjusted value m∗.

This m∗ provides an approximation of the effective electron mass and allows the calculations to

use the acceleration and force of a mass-spring system F = m∗a. In other words, when applying

the usual equations of electrodynamics to charge carriers in a solid, we must use altered values

of particle mass. This accounts for most of the influences of the crystal lattice, so that electrons

can be treated as nearly free carriers (Drude model) [19] in our future calculations.

The effective mass of an electron in a band with a given (E,k) relationship is m∗ = ~2/ d2E
dk2 .

This electron mass is inversely related to the second derivative of the energy band curve (E,k),

shown in Fig. 2.1 (b), and proportional to ~, the reduced form of Planks constant. In the case

of Fig. 2.1, the electron energy E is parabolic with the wave vector k, this parabolic relationship

is what determines the effective mass m∗ of the TCO. Literature [13] suggests that m∗ ∼= 0.35me

for a TCO such as ITO.

In an effort to understand the duality of optical transparency and microwave conductivity of

TCOs, a deeper understanding of TCO doping is required. In the case of ITO, simultaneous



11

Figure 2.1. Illustration quantum states of materials (a) simplified band diagram for a trans-
parent conductor oxide with conduction band doping (b) (E,k) energy band structure of a doped
TCO

transparency and conductivity is possible due to the chemical doping of tin for indium or

by the presence of oxygen impurities in indium oxides. With enough doping it is possible to

create a degenerate gas of free carrier absorption in far-infrared frequencies where the material is

transparent at visible wavelengths. These free carriers produce, high electronic conductivity at

microwave frequencies [13]. Under this free electron model, created by conduction band doping,

the optical and conductive properties may be simply described by using Drude’s model [19],

presented in the following paragraph.

With Drude’s model it is possible to use Maxwell’s equations to model the conductivity and

permittivity of the TCO as a function of frequency. In this case it is well known that a local

current density J within a material follows



12

∇×H = jωεE + J, (2.1)

this equation can be separated into a conduction current Jc = σDCE and a displacement current

Jd = (jωεrε0+σd)E where we solve the frequency dependent sigma with the displacement current

term into

σd =
1

(1 + jωτ)
, (2.2)

where τ = ε/σ. We can now combine both the conduction current conductivity σDC with the

displacement current conductivity σd to form a single effective frequency dependent conductivity

σ(ω)

σ(ω) =

(
Neq

2τ

m∗

)(
1

1 + jωτ

)
=

σDC
1 + jωτ

, (2.3)

where Ne is the electron density of the TCO in m−3, q is the electron charge in Coulombs and

DC conductivity is

σDC =
Neq

2τ

m∗
. (2.4)

Since ∇ × H = J + jωε(ω)E, the Drude model of the frequency dependent dielectric can be

considered. Separating the real and imaginary parts of ε(ω) yields,

ε1(ω) = ε∞ −
ω2
pτ

2

1 + ω2τ 2
, ε2(ω) =

1

ω

(
ω2
pτ

1 + ω2τ 2

)
, (2.5)

where ε∞ is the high-frequency relative permittivity of the conducting material. It is found that

when ε1(ωp) = 0, the plasma frequency ωp of a conducting material can be determined as

ωp =

(
Neq

2

ε∞ε0m∗
− 1

τ 2

) 1
2

. (2.6)

From Equation (2.6) it is noted that the electronic relaxation time τ , also referred to as

electron mobility, µe = qτ0/m
∗ has very little influence on the plasma frequency, leaving the
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electron density Ne as the dominant factor that determines the plasma frequency of the TCO,

illustrated in Fig. 2.2. In order to maximize transmission of the whole visible electromagnetic

spectrum (λvisible = 400 nm to 700 nm) through the material, the plasma frequency must be

below the lowest visible wavelength ( 2π
ωp
< λvisible). If the plasma frequency is set to be barely

below the lowest visible wavelength it is found that the electron density Ne must satisfy the

following relationship,

Ne <
4π2ε∞m

∗

µ0q2λ2visible
, (2.7)

Figure 2.2. Typical plot of a TCO conductivity as a function of wavelength for frequencies
ranging from the visible spectrum through the microwave regime.
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where, µ0 is the magnetic permeability of free space. Equation (2.7) will serve as a guideline for

the doping of free electrons in the transparent material. To allow a small margin of error for

visible transmission it is recommended that we use a material with a plasma wavelength of just

over λp = 1 µm (near-infrared). The power reflection for optical frequencies R(ω) of a uniform

TCO deposition (dielectric slab) is defined as

R(ω) =

∣∣∣∣∣
√
ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣
2

. (2.8)

For frequencies much lower than the plasma frequency ωp the transmission coefficient T (ω) =

1 − R(ω) tends to be close to 0. Alternatively, for frequencies above the plasma frequency the

transmission coefficient increases and limω→∞ = 1, depending on the TCO’s permittivity values.

This transmission coefficient is also dependent on the amount of absorbed energy as it travels

through the lossy dielectric slab(TCO). The amount of absorbed energy is determined by the

electromagnetic skin depth δ, which constrains the electromagnetic wave energy loss as it travels

through a thickness t of the TCO. The transmission of light through a TCO is well approximated

by

T (t) ∼= e(
−2t
δ ). (2.9)

The dual characteristic of light absorption and microwave energy conduction of the TCO

yields two separate equations that determine the skin depth at frequencies where the TCO is

a good conductor but not very transparent ωp > ω, case 1, and where the TCO is transparent

ωp < ω, case 2, as illustrated below:

Case 1, where ωp > ω, ωτ << 1:

ε2 ≈
ω2
pτ

ω
>> |ε1|, δ ≈

(
2

ωµσ

) 1
2

(2.10)
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Case 2, where ωp < ω, ωτ >> 1:

ε2 ≈
ω2
pτ

ω3τ
<< |ε1|, δ ≈

2m∗

Z∞q2
ω2τ

Ne

(2.11)

where we assume that ω < Eg
~ , ε1 ≈ ε∞, Z∞ = 377√

ε∞
Ω and µ is the magnetic permeability of

the TCO. In the second case where the transparency is proportional to the electron mobility

µe. Furthermore, an increase in mobility will ultimately increase both the transparency and

conductivity of the TCO. It is also important to observe that an increase in the free electron mass

m∗ will have the same effect. Therefore, the choice of a TCO for antenna design is determined by

the material’s electron density Ne, free electron mobility µe and free electron mass m∗ ultimately

dictated by the TCO’s (E,k) band structure shape.

2.3 Skin and Ground Effects on Thin Film
Microstrip Antennas

Unlike dipole antennas in free space, current distribution on the microstrip patch can vary

significantly when the width (W ) of the patch is much greater than height (h), W/h >> 1, as

seen in Fig. 2.3 and Fig. 2.4. This change in current distribution is better understood with

the help of the field equivalence principal (Huygens’ principle) [2]. Under a condition where

W/h >> 1 we can assume that the current on the top of the patch (Jt) is much smaller than the

one on the bottom (Jb). Under this assumption, the cavity model provides further simplification

by considering the current density on the top of the microstrip patch Jt to be zero [2]. Moreover,

because the ground plane is near the patch, the magnetic current density is maximized on the

walls of the cavity, thus doubling the magnetic current density on the perfect current density

conducting walls.

The increase in magnetic current density in the cavity model results in an increased current

distribution on the bottom surface of the microstrip, as seen in Fig. 2.3 and Fig. 2.4, where the
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Figure 2.3. Illustration of patch antenna charge and current density distribution

Figure 2.4. Cross section of a microstrip current at microwave frequencies where (a) W/h << 1
and (b) W/h >> 1

current density distribution of a microstrip is compared to its width to height ratio [6].

This situation implies that the AC resistance of the strip, Rs, at large width to height ratios

can be as much as twice that of smaller ratios. [6]

Rs = Rs, if
W

h
< 1, Rs = 2Rs, if

W

h
>> 1 (2.12)

When using TCOs, thin film deposition on the order of 100 nm to 2 µm, is necessary to keep

transparency high. However, when depositions are thinner than skin depth δ =
√

2
σωµ

the surface

resistance dramatically increases as a function of thickness t, compounded by the doubling of the
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surface resistance. This relationship is demonstrated if we assume an exponential current density

distribution over the patch Jx = σEx0e
(−t/δ) and the surface resistance of the rectangular shaped

patch antenna can be defined by initially defining the current through a surface extending from

0 to infinity in the z direction and width W in the y direction, we integrate I =
∫
Jx dS where

dS = dy dz [23]. Then we have

I =

∫ t

z=0

∫ W

y=0

σEx0e
−αzdydz =

[
−WσEx0

α
e−αz

]
= WσEx0δ

(
1− e−αz

)
(2.13)

Is = WσEx0

(
1− e

−t
δ

)
, Vs = Ex0L, (2.14)

where L is th length of the patch. In this case, the surface resistance can be defined as

Rs ≈
L

σWδ
(

1− e−t2δ

) , if W
h
< 1, (2.15)

or

Rs ≈ 2
L

σWδ
(

1− e−t2δ

) , if W
h
>> 1. (2.16)

It is worth noting that both Equations (2.15) and (2.16) provide an empirical approximation

of the surface resistance caused by the skin effect losses. Due to an extreme current density

deformation at thicknesses t << δ a full wave numerical solver may be necessary to properly

predict skin and ground effects and hence surface resistance for transparent patch antennas.

Additionally, Equations (2.15) and (2.16) do not account for additional sources of loss such as

surface roughness, lossy substrate, lossy ground planes, etc.

2.4 Analysis of TCO Effects on Patch
Transparency

In order to better understand the effects of electron mobility µe and carrier concentration

Ne, on TCO transparency, we will analyze ITO, a widely used TCO for use in antenna design.
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Electron mobility and carrier concentration can be controlled through changing oxygen and

argon concentrations. Annealing can improve transparency as well as conductivity [7]. Various

deposition methods such as DC sputtering, RF sputtering, thermal deposition, spray pyrolysis

and pulsed laser deposition may be used for thin film deposition of ITO on a substrate [7].

These methods can influence the TCO deposition rate, uniformity and oxide doping.TCO’s may

be deposited on a variety of optically transparent substrate materials such as glass and clear

fluorocarbon (FEP) film.

Typical values for ITO permittivity and effective electronic mass are ε∞ ≈ 4.0 and m∗ =

0.35me [13]. Electron mobility on high quality ITO films can reach values of µe ≈ 50 ×

10−4 m2V −1s−1, with a DC scattering time τ0 ≈ m∗µe/q ≈ 10−14 s. Drude empirical approxima-

tions suggest that the electronic relaxation time is τ ≈ 3.3× 10−15 s. For our example antenna

a glass substrate with a dielectric of εr = 6.0 and height h = 2.3 mm, is used. The ground plane

is copper and is considered to be a perfect electric conductor (PEC). In Fig. 2.5, we find that

optical transmissions for ITO are high ( greater than 50%) at deposition thicknesses of t ≤ 1µm

or below. The optical transparency of the microstrip patch is not greatly affected by the electron

density, but much better transmission of light is achieved if we increase the electron mobility to

µe = 100 × 10−4 m2V −1s−1 as seen in Fig. 2.6. The decay of optical transparency is greatly

reduced below an electron density of Ne < 1 × 1027 m−3, keeping optical transparency above

60%. Although transparencies improve with lower electron densities, the electrical conductivity

suffers. Increasing electron mobility, on the other hand, increases both the transparency and

conductivity. Table 2.1 shows that conductivity doubles as electron mobility doubles. The same

relationship is observed for the increase of electron density. The near linearity of this relationship

gives µe ∝ σ and Ne ∝ σ.
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Figure 2.5. Optical transmission coeficient for λ0 = 550 nm light and electron mobility
µe = 50 cm2V −1s−1 for various electron densities Ne

Table 2.1. Conductivity of TCO for electron mobility µe for electron densities Ne

Ne = 9× 1026m−3 Ne = 1.5× 1027m−3

µe = 50cm2V −1s−1 2.4×105S/m 4.0× 105S/m
µe = 100cm2V −1s−1 4.8×105S/m 8.0× 105S/m

2.5 TCO and Antenna Design

In the following figures, rectangular microstrip patch antennas were designed to be resonant

from a range of 100 MHz to 10 GHz with an input impedance of Ra = 50Ω by varying their width

and length . The radiation efficiency in this case is calculated as er = Ra
Ra+Rs

and is shown in Fig.

2.7 for electron mobility of µe = 50cm2V −1s−1 and shown in Fig. 2.8 for µe = 100cm2V −1s−1.

The deposition thickness t of the ITO deposition is 1.2µm in order to achieve transparencies of
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Figure 2.6. Optical transmission coeficient for λ0 = 550 nm light and electron mobility
µe = 100 cm2V −1s−1 for various electron densities Ne

50% to 68%, seen in Fig. 2.5 and transparencies of 70% to 80%, seen in Fig. 2.6.

These antennas have very poor radiation efficiencies at frequencies below 2GHz. Fair effi-

ciencies (more than 40%) are achieved for frequencies above 5GHz. It is important to note that

electron mobility above µe = 100cm2V −1s−1 is very hard to achieve and further materials develop-

ment should be done to improve the electron mobility of TCOs, literature [13] suggests that novel

materials such as titanium doped indium oxide could provide higher than µe = 50cm2V −1s−1

mobility. Table 2.2 gives a sample of different TCO materials and their respective µe and Ne. If

the ground plane is also transparent, the radiation efficiency er would drop substantially due to

ground surface resistance Rg, so mobility would become even more critical.
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Figure 2.7. Microstrip patch efficiency er for various antennas above a PEC ground with
resonant frequencies between 100 MHz to 10GHz for electron mobility of µe = 50cm2V −1s−1

The empirical results from Equation( 2.16) were compared to full wave numerical simulation

results using CST Microwave StudioTM. Good agreement is seen, as shown in Table 2.3.

One method of improving efficiency involves the placement of high conductivity materials,

such as copper, in areas of high current density [18]. This technique claims to improve transparent

Table 2.2. Electron mobility and density of various TCOs

Transparent Mobility Density
Conductor µe Ne

(cm2V −1s−1) (m−3)

Indium Tin Oxide [13] 45 4× 1026

Antimony Tin Oxide [10] 9.7 1.26× 1026

Titanium Indium Oxide [22] 80 8× 1026

Gallium Zinc Oxide [20] 13 1× 1026
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Table 2.3. Simulation vs. empirical results for antenna radiation efficiency er with
σ = 2.6× 105S/m, h = 2.3 mm and W = 7.5 mm

Antenna Empirical Simulation
thickness t er er

t = 0.5µm 6.4% 10.0%
t = 1.2µm 28.3% 25.8%
t = 3.0µm 70.3% 53.2%

patch antenna efficiencies up to 30% and could be used to improve TCO antenna efficiencies.

An alternative to TCO antennas is meshed antennas [21] made from non-transparent con-

ductors, seen in Fig. 2.9. These antennas are able to achieve effective transparencies by reducing

the metallic area while still retaining much of the electrical size and performance of a solid

patch. See-through patches are known to achieve transparencies of up to 80% while maintaining

Figure 2.8. Microstrip patch efficiency er for various antennas above a PEC ground with
resonant frequencies between 100 MHz to 10GHz for electron mobility of µe = 100cm2V −1s−1
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Figure 2.9. Meshed see-through microstrip patch antenna

approximate radiation efficiencies of up to 60% [21]. It is also important to note that the ground

and skin depth effects are minimal for these antennas, due to copper’s high free electron density

(Ne = 8.46×1028 m−3) and electron mobility of (µe = 44×10 cm2V −1s−1). Unlike antennas made

out of TCOs, see-through antennas do not require thin depositions and can even be deposited

inexpensively with metallic ink-jet printing [16].

2.6 Conclusion

Transparent and conductive antennas are limited by intrinsic properties. Factors such as thin

film depositions smaller than 2µm create severe skin effect losses that deeply influence antennas

at microwave frequencies. When TCO materials are used for microstrip patch design, the losses

might increase by a factor of 4×, caused by a deformation of the current density around the

patch and ground. The feasibility of a high efficiency lies in the TCO’s material properties that
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seem to be restricted by intrinsic limitations of TCOs. however, if higher electron mobilities

µe (> 100cm2V −1s−1) is achieved then perhaps transparent antennas might turn into a viable

commercial product.



CHAPTER 3

PASSIVE FEED METHOD FOR MESHED

MICROSTRIP PATCH ANTENNAS

3.1 Introduction

Recent advancements in transparent patch antenna designs have enabled the placement of

antennas above the surface of solar cells [21] and on transparent surfaces, such as automobile

windows [5]. Optically transparent antenna designs can be made of see-through meshed forms

[21] or out of transparent materials such as Indium Tin Oxide (ITO) [15]. Much of the difficulty of

feeding these antennas is attributed to the poor bonding of conductive materials, such as copper,

to feed meshed see-through patch antennas. Furthermore, when implementing antenna arrays

the difficulty of feeding optically transparent microstrip patches without blocking the power

harvesting area of a solar cell can also be a challenge. Notwithstanding these shortcomings, a

co-planar electromagnetically coupled passive feed method for transparent antennas is presented.

This feed is presented as an inexpensive and easy implementation of a feed line that can be used

topically on solar cells or other transparent surfaces without blocking its light transmission.

3.2 Co-planar Electromagnetically Coupled
Feed

A common configuration of a passive coupled feed is addressed as a two layer structure where

the feed line is placed underneath the antenna [2]. In the case of feeding antennas placed on an

existing structure such as a solar cell, coupled feeds must be modified to feed the antenna from

its side, as shown in Fig. 3.1.
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3.2.1 Co-Planar Coupled Feed

The co-planar feed consists of a microstrip patch with feed located near its edge, separated

by a gap S, seen in Fig. 3.1. The proximity coupling is mainly due to fringing fields spilling out

of the edge of the feedline or the magnetic field surrounding the feedline. When a feedline of

length λ is fed with an alternating current the line creates a standing wave with current maxima

at λ/4 and 3λ/4 [11] [9]. This concentration of current maxima enables the inductive coupling of

a microstrip patch antenna. This is accomplished by magnetic field vectors perpendicular to the

feedline direction of current flow. From this induced magnetic field a surface current is induced

in the y direction of the patch, seen in Fig. 3.2.

Inversly, if the open circuited end of the feed is extended by λ/4 the feedline is able to shift

the current standing wave by 90◦ (λ/4) thus creating a voltage standing wave at the middle of

the microstrip patch, with voltage maxima at λ/4 and 3λ/4. This voltage maximum induces

charges at the edge of the patch antenna, thus exciting a surface current with a direction x, seen

in Fig. 3.2. This feed uses a capacitive coupling configuration.

The following section focuses on the on the influences of the microstrip feed distance to the

antenna and polarization switching capabilities.

3.2.2 Inductive and Capacitive Coupling of a Passive Feed

The second parameter to be studied in side coupled feeds is the relationship between the gap

distance, S, and its effect on magnetic and capacitive coupling, as seen in Fig 3.3. The coupling

between the feed and the antenna can be considered as two distinctive circuits, shown in Fig. 3.4.

In the case of the placement of current maxima at the center of the patch, shown in Fig.3.2, the

equivalent circuit can be compared to inductors that represent the self and mutual inductances,

Ls and Lm, shown in Fig. 3.4 (a). When coupling occurs at voltage maxima, shown in Fig. 3.3,
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Figure 3.1. Geometry of a co-planar electromagnetically coupled feed

the equivalent circuit can be represented as a mutual and self-capacitance Cm and Cs, shown in

Fig. 3.4 (b).

With the presence of inductive coupling the direction of induced current on the patch is

parallel to the current on the feed. This causes a y directed polarization when the feed current

Figure 3.2. Direction of polarization for different rotation rectangular microstrip patches
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Figure 3.3. Cross section of a coupled microstrip line and antenna.

is y directed. When the passive coupling is capacitive, the current induced on the patch antenna

is in the opposite direction of the feedline current. Previous research [17] has demonstrated

the ability to obtain polarization diversity with the placement of a PIN diode on the feedline,

enabling antennas to work in both x and y linear polarizations or right-hand RHP and left-hand

LHP circular polarizations. It is observed in [17] that when the patch antenna is polarized in

the opposite direction of the feedline current, cross-polarization is increased. However, when

the feedline current is in the same direction of the current on the patch the cross-polarization is

greatly reduced.

3.2.3 Gap Distance and its Effects

For both x and y polarization the gap distance directly influences the power absorption as

seen in Fig. 3.5. For power transfer to be maximized at close distances a guideline for gap

distance S is to be ≈ 0.005λ. In addition to a decay in power absorption from S, polarization

difference can deeply affect power absorption and cross-polarization losses between the patch and

the feed. Gap distance can also increases reactive impedances between the feed and the patch in

turn modifying the resonant frequency of the feed, seen in Fig. 3.5.
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3.3 Meshed See-through Patch Antennas

Another choice for optically transparent antennas is the implementation of meshed see-

through antennas [21]. These antennas are patch antennas that have a meshed surface to

allow penetration of light through its holes. Meshed patch antennas are able to achieve high

transparencies while maintaining high conductivity by using copper as the material of choice for

the mesh. Meshed antennas have been able to achieve high transparencies of up to 90% and high

Figure 3.4. Equivalent circuit of a coupled microstrip line and antenna with (a) a current
maxima coupled configuration and (b) a voltage maxima configuration
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Figure 3.5. Power absorptioon of the patch antenna as a function of feed separation S

antenna efficiencies of 80% [21], as compared to TCOs where transparencies of 80% have only

achieved antenna efficiencies of up to 20%[15] .

The transparency of meshed patch antennas is determined by

Ptran =
Apatch − Ametal

Apatch
100% = 100%−metal%, (3.1)

where APatch is the area of a solid patch, Ametal is the total area of the mesh. The transparency of

the patch is defined as the percentage of the see-through area of the patch minus the percentage

of the metal area.

Meshed see-through antennas are typically fed through the placement of a coaxial feed line at

the center of the meshed patch [21]. Other co-planer feeds have been used when feeding meshed
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antennas. In this work we have simulated and built four antennas that are electromagnetically

fed at a resonant frequency of 2.4 GHz and 2.7 GHz with an input impedance of 50 Ω. Two

antennas are meshed patch antennas that are coupled through both inductive and capacitive

coupling configurations shown in Fig. 3.4 and Fig. 3.6. Two solid copper antennas are placed

Figure 3.6. Picture of meshed and solid patch antennas resonant at 2.4 GHz
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in the same configurations as the meshed antennas for comparison. These patches were built

on Rogers RT/Duroid 4350B with εr = 2.33 and h = 1.6 mm for all four antenna designs. In

the case of the meshed antennas the transparency was 73% to the solid copper patch antenna,

that has a transparency of 0% and seen in Fig. 3.6. The design of the mesh and solid antenna

was initially accomplished with the help of CST Microwave Studio simulation software. All four

antennas are a 28 mm square. For the mesh antennas the line width is 0.7 mm. All four antennas

were simulated using CST microwave studio and good agreement was found between simulation

and actual results.

3.3.1 Inductive Coupling Measurements

The inductive feed configuration presented in Fig. 3.4 (a), where the patch is place at

current maxima, was well matched for both solid and meshed patch antennas with insertion

losses of -20 dB and -12 dB, respectively. The resonant frequency of the meshed patch was at

2.4 GHz while the solid patch frequency was 2.71 GHz. Fig. 3.7 and Fig. 3.8 show the gains

of both antennas. The meshed patch has a gain of 5.69 dB, and the solid patch antenna has

a gain at 5.8 dB. The cross-polarization is the main difference between the two antennas. The

solid patch has a cross-polarization of -33.57 dB while there was a substantial increase in the

cross-polarization of the meshed antenna at -16.95 dB. This increase of cross-polarization on the

mesh antenna is controlled by the line thickness of the mesh. Thinner meshes have been shown

to improve cross-polarization of mesh antennas, while thicker meshes improve antenna gain [5].

Furthermore, it is explained from [5] that a slight decrease in gain from the meshed antenna is

attributed to high currents at the edge of each mesh line.
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Figure 3.7. Radiation pattern of E-Plane in dB of solid patch antenna fed through a passive
feed with an inductive configuration
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Figure 3.8. Radiation pattern of E-Plane in dB of meshed patch antenna fed through a passive
feed with an inductive configuration
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3.3.2 Capacitive Coupling Measurements

The capacitive feed configuration presented in Fig. 3.4 (b) was built for both the solid and

meshed patch antennas. The resonant frequency for the meshed antenna was very close to 2.4

GHz and the solid patch was 2.7 GHz. The solid patch had a gain of 4.9 dB, seen in Fig. 3.9 and

the meshed patch had a lower gain of 4.4 dB, seen in Fig. 3.10. The cross-polarization of the

capacitively fed meshed and solid patches is much higher than the inductively fed configurations.

The capacitive solid antenna had a cross-polarization of -11.9 dB while the mesh antenna had a

much higher value at -5 dB. This result indicates a deep influence of the feed line polarization on

the patch’s polarization. This is enhanced when the passive feed is applied to meshed antennas.
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Figure 3.9. Radiation pattern of E-Plane in dB of solid patch antenna fed through a passive
feed with a capacitive configuration
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Figure 3.10. Radiation pattern of E-Plane in dB of meshed patch antenna fed through a passive
feed with a capacitive configuration
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3.4 Conclusion

This chapter has discussed the implementation of electromagnetically coupled co-planar feeds

for solid and meshed antennas. Passive feeds can be used to control polarization on an antenna by

switching the current maxima and voltage maxima feed position. Also the gap distance between

the feed and the antenna can both reduce the coupled power and alter the resonant frequency

of the patch antenna, seen in Fig. 3.5. The passive feed did not alter the radiation pattern

in both feed configurations. The main influence of the feed on antenna parameters was the

cross-polarization levels. Cross-polarization of the solid and meshed patch antennas was -33.57

dB and -16dB, respectively, when placed in the inductive feed configuration. Alternatively, the

capacitive feed had a much higher cross-polarization of -11.9 dB for the solid patch and -5 dB for

the meshed patch antenna. These higher levels of cross-polarization are due to the contribution

of the feed polarization to the overall antenna parameters.



CHAPTER 4

CONCLUSION

4.1 Patch Antennas Made Out of TCOs

The first section of this thesis addressed the shortcomings of current antenna and solar cell

integration by studying feasibility of TCO implementation for patch antennas on solar cell

panels. Although various studies claim that ITO is a viable material for the implementation

of transparent antennas, it is seen in Chapter 2 that this is true only for higher frequencies

where skin detph is much smaller and it is important to understand the effects of TCOs as thin

film depositions. The properties of each TCO can impact the deposition thickness, transparency

and electrical conductivity. These properties ultimately impact antenna efficiency. In the first

section of Chapter 2, we learned about the influence of the governing equations of thin film TCO

depositions. A study that determines transparency, reflection, absorption and transmission was

introduced. Later these properties were used to understand their impact on antenna design.

It was seen that thin TCO depositions are the biggest surface resistance factor in the design

of transparent antennas. In order to achieve transparent deposition of TCO, they have to be

deposited as thin layers of usually 800 nm to 2 µm . These thicknesses introduce high skin effect

losses in the microwave regime, 300 MHz to 30 GHz, yielding antenna efficiencies of approximately

10 % to 20 %. An empirical equation was derived to approximate skin effect losses. Furthermore

these losses can be generalized by the TCO’s electron mobility µe and electron density Ne.

Reduction of skin depth losses can be mitigated by an increase in electron mobility µe. Increased
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electron mobility increases electrical conductivity and transparency of TCOs. Unfortunately,

TCOs in existence today do not achieve levels of electron mobility to mitigate skin depth losses

present in microwave frequencies. Only frequencies above 10 GHz have small enough losses to

achieve acceptable efficiency levels while keeping transparencies above 80%. Another factor that

influences electrical conductivity of TCO’s is electron density Ne. It is seen in Chapter 2 that

an increase of electron density will help mitigate some skin losses but unlike electron mobility, it

will reduce TCO transparency. Therefore, a set value of electron density is required for improved

conductivity. This set value is given in the expression of eq. 2.7. Acceptable ITO patch antenna

efficiencies are presently unachievable at microwave frequencies of 300 MHz to 10 GHz, so we

introduce some additional techniques that can improve transparent antenna efficiency such as

the placement of a material with higher conductivity around areas of the antenna where the

current density is high. Alternatives to TCOs were also visited. These alternatives are in the

form of meshed patch antennas that can be placed on top of solar cells and cover very little area,

thus allowing most of the light on the solar cell to be harvested.

4.2 Coupled Feeds for Meshed Patch Antennas

Chapter 3 introduced the use of co-planar electromagnetically coupled feeds for meshed patch

antennas. The use of these types of feeds has not been throughly explored in literature. It is

demonstrated how the use of coupled feeds is an effective way to feed meshed antennas. A big

advantage of these co-planar feeds is the ability to control polarization with minimal bonding to

the meshed antenna. These feeds are also viable for transparent antennas made of transparent

conducting materials. In the capacitive coupling configuration the meshed patch is place on

the voltage maxima locations of the open ended feed and the polarization is perpendicular to

the direction of current flow on the feed line. Alternatively, the inductive coupling is placed
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on the current maxima locations of the feed and the polarization is parallel to the direction of

current flow on the feed line. This allows a polarization flexibility and even the application of

polarization diversity schemes with the placement of a pin diode, discussed in Chapter 3. Gains

of up to 5.4 dB were observed for meshed patch antennas, with high cross-polarization (-5 dB)

in the capacitive coupling configuration. It was concluded that the high cross-polarization of the

feed in the capacitive configuration is due to the direction of current flow on the the feed being

orthogonal to the induced current on the coupled patch antenna.

4.3 Future Work

Although this thesis mainly discussed the use of transparent antennas on solar cells, the

application for such antennas is not limited to solar cells on small satellites. These transparent

antennas can be also used in other areas such as windshields of cars and even as transparent RF

circuits. As seen in this thesis, the present state of TCOs has not matured enough to allow the

implementation of TCOs in antenna design at microwave frequencies of 100 MHz to 10GHz but

can be used at frequencies above 10GHz. This work gives some guidelines and requirements so

that antenna engineers and materials scientists can push the boundaries and enable the usage

of such materials. The use of transparent TCOs can enable implementation of transparent RF

circuits for aviation, transportation and consumer electronics. Once TCOs are improved for use

at frequencies of 300MHz to 10 GHz, the implementation of passive feeds presented in this thesis

will help with additional challenges such as bonding of TCOs to copper. Furthermore, co-planar

coupled feeds can be used to feed materials that are more difficult to bond, such as the feeding

of fabric antennas, etc.
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