ECE 6130 Impedance Matching

Text Sections: 5-2

Portfolio question: How do you design a single-stub matching network for "any" complex load?

Examples: ECE315 text Chapter 2 (available on reserve in library or in the IEEE room) Problems 35,36,38 (single stub matching)

IMPEDANCE MATCHING:

A **matching network** is used so that there is no reflection from the load to the generator. (Zin (at input to matching network) = Zo)

One way to do this: Quarter-Wave Transformer

Disadvantage of 1/4 wave transformer? We must be able to adjust both L and Zo (size/shape of TL). This is not easy.

Better method: (Single Stub Matching) Use a known transmission line short or opencircuited at the end (a stub). Control the length of the stub and the distance to the load (both easy to control).

How to model stubs:

Yin = Ys + Yd

EXAMPLE (See transparencies)

Matching:

For matched system, Yin = Yo

This is accomplished by: Adjusting the line length (d) until $Yin = Yo \pm jX$ and then adding in a capacitive / inductive component (short-circuited stub) to remove X.

Single-Stub Matching:

- 1) Plot z_L
- 2) Reflect it through the origin to find y_L
- 3) Rotate y_L towards the generator until it reaches $r_L = 1.0$ circle (there will be two points, choose the closest one). This is the length (d) between the load and the stub.
- 4) Read the value of x_L
- 5) For a short-circuited line, Plot z_L (left hand side), and reflect it through the origin to y_L (right hand side)
- 6) Rotate the short-circuit towards the generator until it reaches $y_s = 0 j x_L$. This is the length of the stub.
- 7) The new $y_{in} = 1 + j0$ (bull's-eye)

EXAMPLE (see transparencies)