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FILTER DESIGN

Filters occur so frequently in the instrumentation
and communications industries that no book covering
the field of rf circuit design could be complete without
at least one chapter devoted to the subject. Indeed,
entire books have heen written on the art of filter de-
sign alone, so this single chapter cannot possibly cover
all aspects of all types of filters. But it will familiarize
you with the characteristics of four of the most com-
monly used filters and will enable you to design very
quickly and easily a filter that will meet, or exceed,
most of the common filter requirements that you will
encounter.

We will cover Butterworth, Chebyshev, and Bes-
sel filters in all of their common configurations: low-
pass, high-pass, bandpass, and bandstop. We will
learn how to take advantage of the attenuation char-
acteristics unique to each type of filter. Finally, we
will learn how to design some very powerful filters
in as little as 5 minutes by merely lInoking through a
catalog to choose a design to suit your needs.

BACKGROUND

In Chapter 2, the concept of resonance was ex-
plored and we determined the effects that component
value changes had on resonant eircuit operation. You
should now be somewhat familiar with the methods
that are used in analyzing passive resonant circuits
to find quantities, such as loaded Q, insertion loss, and
bandwidth. You should also be capable of designing
one- or two-Tesonator circuits for any loaded Q desired
(or, at least, determine why you cannot). Quite a few
of the filter applications that you will encounter, how-
ever, cannot be satisfied with the simple bandpass
arrangement given in Chapter 2. There are occasions
when, instead of passing a certain band of frequencies
while rejecting frequencies above and below (band-
pass), we would like to attenuate a small band of fre-
quencies while passing all others. This type of filter
is called, appropriately enough, a handstop filter. Still
other requirements call for a low-pass or high-pass
response. The characteristic curves for these responses
are shown in Fig. 3-1. The low-pass filter will allow
all signals below a certain cutoff frequency to pass
while attenuating all others. A high-pass filter's re-
sponse is the mirror-image of the low-pass response
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and attenuates all signals below a certain cutoff fre-
quency while allowing those above cutoff tu pass.
These types of response simply cannot be handled
very well with the two-resonator bandpass designs of
Chapter 2.

In this chapter, we will use the low-pass filter as
our workhorse, as all other responses will be derived
from it. So let’s take a quick look at a simple low-pass
filter and examine its churacteristics, Fig. 3-2 is an
example of a very simple two-pole, or second-order
low-pass filter, The order of a filter is determined by
the slope of the attenuation curve it presents in the
stopband. A second-order filter is one whose rolloff is
a function oF ¥he frequency squared, O 12 OB per
octave. A third-order filter causes a rolloff that is pro-
portional to frequency cubed, or 18 dB per octave.
Thus, the order of a_filter can be equated with the
number of significant reactive clements that it pre-
sents to the source as the si eviates from the
passband.

The circuit of Fig. 3-2 can be analyzed in much the
same manner as was done in Chapter 2. For instance,
an examination of the effects of loaded Q on the re-
sponse would yield the family of curves shown in Fig.
3.3. Surprisingly, even this circuit configuration can
cause a peak in the response. This is due to the fact
that at some frequency, the inductor and capacitor will
become resonant and, thus, peak the response if the
loaded Q is high enough. The resonant frequency can
be determined from

1

For low values of loaded Q, however, no response peak
will be noticed.

The loaded Q of this Glter is dependent upon the
individual Q's of the series leg and the shunt leg
where, assuming perfect components, .

Q= % (Eq. 3-2)
and,
Q=g (Eq.33)
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godthe total Q is:
' __ 0.0,
Qtotnl Ql + Qz
if the total Q of the circuit is greater than about 0.5,
then for optimum- transfer of power from the source
to the load, Q1 should equal Q.. In this case, at the

(Eq.34)
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Fig. 3-1. Typical filter response curves.

Fig. 3-2. A simple low-pass filter.
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peak frequency, the response will approach 0-dB in-
sertion loss. If the total Q of the network js less than
about 0.5, there will be no peak in the response and,
for optimum transfer of power, R, should equal R;.
The peaking of the filter’s response is commonly called
ripple (defined in Chapter 2) and can vary consider-
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ably from one filter design to the next depending on

the application. As shown, the two-element filter ex-

hihits only one response peak at the edge of the pass-
and.

b It can be shown that the number of peaks within the

passband is directly related to the number of ele-

ments in the filter by:

Number of Peaks =N — 1

where.
N = the number of elements.

Thus, the three-element low-pass filter of Fig. 3-4
should exhibit two response peaks as shown in Fig.
3-5. This is true only if the loaded Q is greater than
one. Typical response curves for various values of
loaded Q for the circuit given in Fig. 3-4 are shown

in Fig. 3-6. For_all odd- I networks, the response
at dc_a he upper edge of the passband ap-
proa with dips in the response between the

two frequencies. All even-order networks wi pro-
duce an insertion loss at dc equal to the amount of
passband ripple in dB. Keep in mind, however, that
either of these two networks, if designed for low values
of loaded Q, can be made to exhibit little or no pass-
band ripple. But, as you can see from Figs. 3-3 and
3-8, the elimination of passband ripple can be made
only at the expense of bandwidth. T}ﬁ_eﬂlllex_tbe
ripple is_allowed, the wider the bandwidth be-
_comes a ore, selectivity suffers,” Optimum
fatness in the passband occurs when the loaded Q
of the three-element circuit is equal to one {1). Any
value of loaded Q that is less than one will cause the
response to roll off noticeably even at very low
frequencies. within the defined passhand. Thus, not
only is the selectivity poorer but the passband inser-
tion loss is too. In an application where there is not
much signal to begin with, an even further decrease
in signal strength could be disastrous,

Now that we have taken a quick look at two repre-
sentative low-pass filters and their associated responses,
let’s discuss filters in general:

1. High-Q filters tend to exhibit a far_greater _initial

3 ard_the stopband than their low-Q coun-
terparts with the same number of elements. Thus,
at any frequency in the stopband, the attenuation
will be greater for a high-Q filter than for one with
2 lower Q. The_penalty for this improvement is_
the _increase in passband ripple _that must occur
as-a result. B T )

2. Low-Q filters tend to have the flattest passband
respense but their initial attenuation slope at the
band edge is small. Thus, the penalty for the re-
duced passband ripple is a decrease in the initial
stopband attenuation.

" 3. As with the resonant circuits discussed in Chapter
2, the source and load resistors loading a filter will
have a profound effect on the Q of the flter and,
therefore, on the passhand ripple and shape factor
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of the filter. If a filter is inserted between two re-
sistance values for which it was not designed, the
performance will suffer to an extent, depending
upon the degree of error in the terminating im-
pedance values.

4. The final attenuation slope of the response is de.

pendent upon the order of the network, The order
of the network is equal to the number of reactive
elements in the low-pass filter. Thus, a second-order
network (2 elements) falls off at a final attenuation
slope of 12 dB per octave, a third-order network (3
elements) at the rate of 18 dB per octave, and so
on, with the addition of 6 dB per octave per ele-
ment.

MODERN FILTER DESIGN

Modern filter design has evolved through the years
from a subject known only to specialists in the field
{because of the advanced mathematics involved) to
a practical well-organized catalog of ready-to-use cir-
cuits available to anyone with a knowledge of eighth
grade level math. In fact, an average individual with
absolutely no prior practical filter design experience
should be able to sit down, read this chapter, and
within 30 minutes be able to design a practical high-
pass, low-pass, bandpass, or bandstop filter to his
specifications. It sounds simple and it is—once a few
basic rules are memorized.

The approach we will take in all of the designs in
this chapter will be to muke use of the myriad of
normalized low-pass prototypes that are now avail-
able to the designer. The actual design procedure is,
therefore, nothing more than determining yonr re-
quirements and, then, finding a filter in a catalog
which satisfies these requirements. Each normalized
element value is then scaled to the frequency and im-
pedance you desire and, then, transformed to the type
of response (bandpass, high-pass, bandstop) that you
wish. With practice, the procedure becomes very sim-
ple and soon you will be defining and designing filters.

The concept of normalization may at first seem
foreign to the person who is a2 newcomer to the field
of filter design, and the idea of transforming a low-pass
filter into onc that will give une of the other three
types of responses might seem absurd. The best advice
I can give (to anyone not familiar with these prac-
tices and who might feel a bit skeptical at this point)
Is to press on. The only way to truly realize the
beauty and simplicity of this approach is to try a
few actual designs. Once you try a few, you will be
haoked, and any other approach to flter design will
suddenly seem tedious and unnecessarily complicated.

NOBMALIZATION AND THE
LOW-PASS PROTOTYPE

In order to offer a catalog of useful filter circuits 10
the electronic filter designer, it became necessary 10
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dardize the presentation of the material. Obvi-
ly, in practice, it would be extremely difficult to
ous are the performance and evaluate the usefulness
two filter networks if they were operating under
o totally ditferent sets of circumstances. Similarly,
o resentation of any comparative design informa-
m%or filters, if not standardized, would be totally
ss. This concept of standardization or normaliza-
son, menmrely a tool usa t3 to
i aH—ﬁlmﬁ‘and—peFfﬂﬂmncemn
nner us Circuit designers. Novmalization

ama ‘agb_i

assures the designer of the ca ity "of comparing
T Eiven

he
rating conditions,
7All of the catalogued filtcrs in this chapter are low-
o

ss filters normalized for a cutoff frequency of one
‘yadian per second {0.159 Hz) and for source and load
resistors of one chm. A characteristic response of such
8 filter is shown in Fig. 3-7. The circuit used to gen-
enste this response i5.called the low-pass prototype.

al

Frequency (w)
Fig. 3-7. Normalized low-pass response.

Obviously, the design of a flter with such a low
equency would require component values
ger than those we are accustomed to working

» Gapacitor values would he in farads rather than
arads and Dicofarads, and the inductor values
be in henries rather than in microhenrics and
uries. But once we choose a snitable low-pass

e from the catalog, we can change the im-
’Nlnce level and cutoff frequency of the filter to any

2 We wish through 4 simple process called scaling,
result of thig Process is a practical filter design

le component values,

FILTER TYPES

Magy ¢ the filters useq today bear the names of the
: _Who deVeloped them, In this sectivn, we will take
€e such filters and examine their attenua-
teristics. Their relative merits will be dis-
their low-pass prototypes presented The
" types discussed will include the Butter.
thys €V, and Bessel responses.

orth Response

Merworth Blter is a medium-Q flter that s
8s which require the amplitude response

Attenuation ({B)
a
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of the filter to be as flat as possible. The Butterworth
response is the flattest passband response available
and contains no ripple. The typical response of such
a filter might look like that of Fig. 3-8,

Since the Butterworth response is only a medium-Q
filter, its initial attenuation steepness is not as good
as some filters but it is better thap uthers. This char-
acteristic often causes the Butterworth response to be
called a middle-of-the-road esign. -
" Lhe attenuation oF & Butterworth filter is given by

Aww = 101og[ 1 4 (a“l)z] (Eq. 3-5)

where,
@ = the frequency at which the attenuation is de-
sired,

w, = the cutoff frequency (®aan) of the filter,
n = the number of elements in the filter,

Tepresentation of the attenuation provided by any
order of filter at any frequency. This information is
illustrated in Fig. 3-9. Thus, from Fig. 3-9, a 5-clement
(tifth order) Butterworth flter will provide an attenu-
ation of approximately 30 dB at a frequency equal to
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Fig. 3-8, The Butterworth response.
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twice the cutoff frequency of the filter. Notice here
that the frequency axis is normalized to w/w, and the
graph begins at the cutoff (—3 dB) point. This graph
is extremely useful as it provides you with a method
of determining, at a glance, the order of a filter needed
to meet a given attenuation specification, A brief
example should illustrate this point (Example 3-1).

EXAMPLE 3-1

How many elements are required to design a Butter-
worth filter with a cutoff frequency of 50 MHz, if the lter
must provide at least 50 dB of attenuation at 150 MHzp

Solution
The first step in the solution is to find the ratio of ©/w.
= t/f..
£ 150 MHz
f. — 50 MHz
=3

Thus, at 3 times the cutoff frequency, the response must be
down by at least 50 dB. Referring to Fig. 3-9, it 1s seen very
quickly that a minimum of 6 elements is required to meet
this design goal, At an £/f, of 3, a G-element design would
provide approximately 57 dB of attenuation, while a 5-ele-
ment design would provide only about 47 dB, which is not
quite good enough.

The element values for a normalized Butterworth
low-pass filter operating between equal 1-ohm termi-
nations (source and load) can be found by

Ak=23in(%m,k=l,2,...n (Eq.3-6)

where,
n is the number of elements,
Ay 1s the k-th reactance in the ladder and may be
either an inductor or capacitor.

The term (2k ~1)7/2n is in radians. We can use
Equation 3-8 to generate our first entry into the cata-
log of low-pass prototypes shown in Table 3-1, The
Placement of each component of the filter is shown

Immediately above and below the table,
e rules for interpreting Butterworth tables are
Ple. The schematic shown above the table is used
Whenever the ratio Re/Ry is ealeulated as the design
criteria. The table is read from the top down. Alter-
Nately, when Ri/Rg is calculated, the schematic below
€ table is uged. Then, the element designators in the
table are read from the bottom up. Thus, a four-ele-
ﬁ:ﬂt low-pags prototype ‘could appear as shown in
- 3-10. Note here that the element values not given
A Table 3.1 are simply left out of the prototype ladder
k. The 1-0hm load resistor is then placed di-

Y across the output of the filter,

' éefnember that the cutoff frequency of each filter is
&v dlB:n Der second, or 0,159 Hz, Each capacitor value
¥en is in farads, and each inductor value is in hen-
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ries. The network will later be scaled to the impedance
and frequency that is desired through a simple multi.
plication and division process. The component values
will then appear much more realistic.

Occasionally, we have the need to design a filter that
will operate between two unequal terminations ag
shown in Fig. 3-11. In this case, the circuit is normal.

1 1.848 0.765

Fig. 3-10. A four-element Butterworth low-pass
prototype circuit.

Table 3-1. Butterworth Equal Termination Low-Pass
Prototype Element Values (Rg = R, )

1 L2 L4

rrerov

f Cl L2 Cs L4 C5 LG C1- \
2 1414 1414 !
3 1000 2000 1.000
4 0765 1848 1.848 0.765
5 0618 1618 2000 1.618 0618
8 0518 1414 1932 1932 14i4 0518
7 0445 1247 1.802 2.000 1802 1247 0445
n L, C, Ly C, L, Ce Ly

1 L Ly

G

Rg
Filter

Xn
N\, RL2100

Fig. 3-11. Unequal terminations.

Filter

) Rig1n

Fig. 3-12. Normalized unequal terminations.
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resistance of 1 ohm, while taking what
3 prgo:O?Se source resistance. Dividing bogth the
#*ind source resistor by 10 will yield a load re-
e ce of 1 ohm and a source resistance of 5 ohms
" orwn in Fig. 3-12. We can use the normalizcd
-minating resistors to help us find a low-pass proto-
o ;il?‘g.tz is a list of Butterworth low-pass proto-
e alues for varicus ratios of source to load im-
ance (Rs/Br). The schematic shown above the
sable is used when Rs/Ry is calculated, and the ele-
!wt values are read down from the top of the table.

Table 3-2A. Butterworth Low-Pass
Prototype Element Valucs

49

Alternately, when R./R, is caleulated, the schematic
below the table is used while reading up from the
bottom of the table to get the element values {Ex-
ample 3-2),

0.200 2.665 0.284 7.910

0.100 5,187 0.138  15.455

w® 1.500 1.333 0.500
4 L111 0466 1.592 1.744 1.469
1.250 0.388 1.685 1.511 1.811

1429 0.325 1.862 1.291 2,175
1.867 0.269 2.103 1.082 2613
2.000 0.218 2.452 0.883 3.187

3.333 0.124 3.883 0.507 5.338
5.000 0.080 5.684 0.331 7.940
10.000 0.039 11.004 0.162 15.842
0.383

EXAMPLE 3.2

Find the low-pass prototype value for an n — 4 Butter-
worth filter with unequal terminations: Rs = 30 ohms, R,
= 100 ohms.

Solution

Normalizing the two terminations for Ry = 1 ohm will
vield a value of Ry = 0.5, Reading down from the top of
Table 3-2, for an n = 4 low-pass prototype value, we see
that there is no Rs/Re = 0.5 ratio listed. Our second choice,
then, is to take the value of Re/Ry — 2, and read up from
the bottom of the table while using the schematic below
the table as the form for the low-pass prototype values,
This approach icsults in the Iow-pass prototype circuit of
Fig. 3-13.

0.218 0.883

0.5

Fig. 3-13. Low-pass prototype circuit for Example 3-2.

Obviously, all possible ratios of source to load re-
sistance could not possibly fit on a chart of this size.
This, of course, leaves the potential problem of not
being able to find the ratio that you need for a par-
ticular design task. The solution to this dilemma is
to simply choose a ratio which most clesely matches
the ratio you need to complete the design. For ratios
of 100:1 or so, the best results are obtained if you
assume this value to be so high for practical purposes
as to be jufinite, Stnce, in these instances, you are
only approximating the ratio of source to load resis-
tance, the filter derived will only approximate the re-
sponse that was originally intended. This is usually
not too much of a problem,

The Chebyshev Response

The Chebyshev filter is 4 high-Q filter that is used
when: (1) a steeper initial descent into the stopband
is required, and (2) the passband response is no
longer required to be flat. With this type of require-
ment, ripple can be allowed in the passband. As more
ripple is introduced, the initial slope at the beginning
of the stopband is increased and produces a more
rectangular attenuation curve when compared to the
rounded Butterworth response. This comparison js
made in Fig. 3-14. Both curves are for n = 3 filters.
The Chebyshev response shown has 3 dB of passband
ripple and produces a 10 dB improvement in stopband
attenuation over the Butterworth filter.
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Table 3-2R. Butterworth Low-Pass Prototype Element Values
n RB/RL Cl L2 CB L4 Cs Lﬂ C-,
5 0.900 0.442 1.027 1.910 1.758 1.389
0.800 0.470 0.868 2.081 1.544 1.738
0.700 0.517 0.731 2.285 1.333 2.108
0.800 0.586 0.609 2.600 1.128 2.552
0.500 0.686 0.496 3.051 0.924 3133
0.400 0.838 0.388 3.736 0.727 39685
0.300 1.004 0.285 4.884 0.537 5.307
0.200 1.808 0.186 7.185 0.352 7.935
0.100 3.512 0.091 14,095 0.173 15.710
oo 1.545 1.694 1.382 0.594 0.309
6 1111 0.289 1.040 1.322 2.054 1.744 1.335
1.250 0.245 1.118 1.126 2.239 1.550 1.688
1.428 0.207 1.236 0.957 2.499 1.346 2.082
1.667 0.173 1.407 0.801 2.858 1.143 2.509
2.000 0.141 1.653 0.654 3.369 0.942 3.094
2.500 0.111 2.028 0.514 4.141 0.745 3831
3.333 0.082 2.658 0.379 5433 0.552 5.280
5.000 0.054 3.917 0.248 8.020 0.363 7.922
10.000 0.028 7.705 0.122 15,786 0.179 15.738
w 1.553 1759 1,553 1.202 0.758 0.259
7 0.800 0.299 0.711 1.404 1,489 2125 1.727 1.298
0.800 0.322 0.508 1.517 1.278 2.334 1.546 1.852
0.700 0.357 0515 1.688 1.091 2.618 1.350 2.028
0.800 0.408 0.432 1.928 0.917 3.005 1150 2,477
0.500 0.480 0.354 2,273 0.751 3.553 0.951 3.0684
0.400 0.590 0.278 2.765 0.502 4.380 0.754 3.904
0.300 0.775 0.208 3871 0437 5.781 0.560 5.258
0.200 1.145 0.135 5.427 0.287 8.528 0.369 7.908
0.100 2.257 0.087 10.700 0.142 16.822 0.182 15,748
0 1.558 1.799 1.659 1.397 1.055 0.658 0.223
n RL/ Rs L]_ 02 LS C4 L5 CB LT

The attenuation of a Chebyshev filter can be found
¥ making a few simple but tiresome calculations, and
can be expressed as:

Am=10l0g [1+ eC2(2)']  (Eq.37)
where,
G (2)’ is the Chebyshev polynomial to the order
n evaluated at (-—)

The Chebyshey polynomials for the first seven orders

are given in Table 3-3. The parameter ¢ is given by:

€ =~/10Rs,/10 _ (Eq 3—8)
where,

Rys is the passband ripple in decibels.

Note that (2
@

<

)' is not the same as (c—?—-) The guan-
<
tity (wﬂc)’ can be found by defining another parameter:

~Leon(1)
n €

{Eq.3-9)



FILTER Desien

|

-
(=3
1

Butterworth
Response

Aneraation (43}
s B8
T

3dB
Chebyshev
Response

=]

!
I
!
1
1
'
1
1
!
i
I
)
1
|
|
I
i
|

1
_—_—

1 1
1 2 3 4
Frequency (f/f,)

Fig. 3-14. Comparison of three-element Chebyshev
and Butterworth responses,

Table 3-3. Chebyshev Polynomials to the Order n

n Chebyshev Polynomial
o
1 o
2 2 mﬂ)z -1
wls w
3 ()" -s(2)
o\t w2
. 8(a) —8(2) +1

s | () - n(2) ()
S T R A O

1| ) ey s m(e) o)

S

where

n = the order of the filter,

€= the parameter defined in Equation 3-8,

cosh~1 = the inverse hyperbolic cosine of the quan-
tity in parentheses.

Floally, we have: Tr

R
(wﬂ) = (3) cosh /( (Eq.3-10)
‘Vhere,

w
(‘,“,‘)= the ratio of the frequency of interest to the
',

cutoff frequency,
I‘fmh = the hyperbolic cosine.
‘meyour calculator does not have hyperbolic and in-
* hyperbolic functions, they can be manually de-
ed from the following relations:
cosh x = 0.5(e* + e—%)

|
cosh ~lx = In{x =/~ 1)

Preceding equations yield families of attenua-
s, each classified according to the amount of

ol

ripple allowed in the passhand, Several of these fami-
lies of curves are shown in Figs. 3-15 through 3-18, and
include 0.01-dB, 0.1-dB, 0.5-dB, and 1.0.dB ripple.
Each curve begins at w/w, = 1, which is the normal-
ized cutoff, or 3-dB frequency. The passband ripple is,
therefore, not shown.

If other families of altenuation curves are needed
with different values of passband ripple, the preceding
Chebyshev equations can be used to derive them. The
problem in Example 3-3 illustrates this.

Obviously, performing the calculations of Example
3-3 for various values of w/aw,, ripple, and filter order
is a very time-consuming chore unless a programmable
ealeulator or computer is available to do most of the
work for you.

The low-pass prototype element values correspond-
ing to the Chebyshev responses of Figs. 3-15 through
3-18 are given in Tables 3-4 through 3-7. Note that the
Chebyshev prototype values could not be separated
into two distinct sets of tables covering the equal and
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Fig. 3-15. Attenuation characteristics for a Chebyshev
filter with 0.01-dB ripple.
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Fig. 3-18, Attenuation characteristics for a Chebyshev
filter with 0.1-dB ripple.
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Fig. 3-17. Attenuation characteristics for a Chebyshev
filter with 0.5-dB ripple.

unequal termination cases, as was done for the But-

terworth prototypes. This is b the even order

Chebyshey fil not have equal

~lerminationg, The source and load must always be
different for proper operation as shown in the tables.

EXAMFLE 3.3

Find the attenuation of a 4-element, 2.5-dB ripple, low-
pass Chebyshev filter at w/w. — 2.5,

Solution

First evaluate the parameter:

€= V1025710
= (0.882

1
B = l/-l [cosh—l (0@)]

= 0.1279
Then, {w/w. ) is;
(w/w.)’ = 2.5 cosh .1279
= 2.5204

Finally, we evaluate the fourth order (n = 4) Chebyshev
polynomial ut (w/w.)” = 252,

w wi?t w2
C‘(z:) “S(E) “B(E) +1
= 8(2.5204)4 — 8(2.5204 )2 +1
= 273.05

We can now evaluate the final equation,

Aan = 10 logs [1 + 520.2(3) ’]
= 10logn [1 + (0.882)2(273.05)2]
= 4763 dB

Thus, at an w/w, of 2.5, you can expect 47.63 dB of atten-
uation for this filter.

Next, find B.
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Fig. 3-18. Attenuation characteristics for a Chebyshev
filter with 1-dB ripple.

The rules used for interpreting the Buttcrworth ta-
bles apply here also. The schematic shown above the
table is used, and the element designators are read
down from the top, when the ratio Rs/Ry is calculated
as a design criteria, Alternately, with Rp/Bs caleula-
tions, use the schematic given below the table and read
the element designators upwards from the bottom of
the table. Example 3-4 is a practice problem for use
in understanding the procedure.

EXAMPFLE 3-4

Find the low-pass prototype values for an n = 5,0.1-dB §
ripple, Chebyshev filter if the source resistance you are de- |
signing for is 50 okms and the load resistance is 250 ohms. {

Solution

Normalization of the suurce and load resistors yields an
Rs/Re = 0.2. A lock at Table 3-5, for a 0.1-dB ripple
filter with an n = 5 and an Re/R; = 0.2, yields the circuit
values shown in Fig. 3-19. i

0.295 0.366

Fig. 3-19. Low-pass prototype circuit for Example 3-4,

It should be mentioned here that equations could
have been presented in this section for deriving thﬁ
element values for the Chebyshev low-pass prototypes!
The equations are extremely long and tedious, how-
ever, and there would be little to be gained from their
presentation.
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‘i:;ble 3-4A. Chebyshev Low-Pass Element Values
for 0.01.dB Ripple

- el
Re L L
s Rg/Bg C, L, Cy L,

—_ 1101 1347 1.483
Tl 1247 1.595
1950 0943 1.997
1429 0959 2344
1667 0.609  2.750
2000 0479  3.277
2500 0363  4.033

3333 0959 5955
5000  0.164 1.850
10000 0078  14.749
o 1412 0.742
.8 1000 1181 1.821 1.181

0.900 1.092 1.660 1.480
0.800 1.097 1.443 1.806
0.700 1.160 1.228 2.165
0.800 1.274 1.024 2.598
0.500 1.452 0.829 3.164
0.400 1.734 0.645 3.974
0.300 2216 0.470 5.280
0.200 3.193 0.305 7.834
0.100 6.141 0.148 15.390

o0 1.501 1.433 0.591

4 1100 0.950 1.938 1.761 1.046
LIl 0.854 1.948 1.744 1.165
1.250 0.618 2.075 1,542 1817
1.429 0.495 2.279 1.334 2.008
1.687 0.398 2.571 1.128 2.461
2.000 0.318 2.004 0.926 3.045
2.500 0.242 3.641 0.729 3.875
3.333 0.174 4727 0.538 5.209
5.000 0112 6.910 0.352 7.813

10000 0,054 13469 0173 15510
. =] 1.529 1.691 1.312 0523
L " Ri/By L Cy L, C,

—

The Bessel Filter

,‘The Initial stopband attenuation of the Bessel filter
Very poor and can be approximated by:

Agp = 3( we)
::i‘ expression, however, is not very accurate above

&e:lmc that is equal to about 2. For values of /w,
ter thap 9, g straight-line approximation of 6 dB

(Eq.3-11)
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per octave per element can be made. This yields the
family of curves shown in Fig. 3-20.

But why would anyone deliberately design a filter
with very poor initial stopband attenuation character-
isticsP The Bessel filter was originally optimized to
obtain a maximally flat group delay or linear phase
characteristic in the filter'’s passband. Thus, selectivity
or stopband attenuation is not a primary concern when
dealing with the Bessel filter. In high- and medium-Q
filters, such as the Chebyshev and Butterworth filters,
the phase response is extremely nonlinear over the
filter'’s passband, This phase nonlinearity results in
distortion of wideband signals due to the widely
varying time delays associated with the different
spectral components of the signal. Bessel filters, on
the other hand, with their maximally flat (constant)
group delay are able to pass wideband signals with a
minimum of distortion, while still providing some
selectivity.

The low-pass prototype element values for the Bes-
sel flter are given in Table 3-8, Table 3-8 tabulates
the prototype element values for various ratios of
source to load resistance.

FREQUENCY AND IMPEDANCE SCALING

Once you specify the filter, choose the appropriate
attenuation response, and write down the low-pass
prototype values, the next step is to transform the
prototype circuit into a usable filter, Remember, the
cutoff frequency of the prototype circuit is 0.159 Hz
(@ =1 rad/sec), and it operates between a source and
load resistance that are normalized so that R, = 1 ohm.

. \§
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Fig. 3-20. Attenuation characteristics of Bessel filters.
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Table 3-4B. Chebyshev Low-Pass Element Values for 0.01-dB Ripple

R L, L L
o—JTUTL_,
c:II Cy I cs% C,% Ry
n Rg/R;, C,; L, C, L, Cy L, Cq
3 1.000 0.977 1.685 2037 1.885 0.977
0.800 0.880 1.458 2.174 1841 1.274
0.800 0.877 1.235 2.379 1.499 1.807
0.700 0.926 1.040 2.858 1,323 1.977
0.600 1.019 0.863 3.041 1153 2,424
0.500 1.168 0.689 3.584 0.942 3.009
0.400 1.398 0.544 4.403 0.749 3.845
0.300 1.787 0,398 5772 0.557 5.193
0.200 2.604 0.259 8514 0.368 7.898
0.100 5.041 0.127 16.741 0.182 15.613
0 1.547 1.705 1.645 1.237 0.488
6 1,101 0.851 1,796 1.841 2,027 1.6831 0.937
1.111 0.760 1.78% 1.775 2.004 1.838 1.063
1.250 0.545 1.864 1.489 2.403 1.507 1.504
1.429 0.438 2.038 1.268 2,735 1.332 1.899
1.667 0.351 2.298 1.061 3.167 1.145 2.357
2.000 0.279 2.678 0.867 3.768 0.954 2.048
2.500 0.214 3.261 0.682 4,667 0.761 3.790
3.333 0,155 4.245 0.503 6.163 0.568 5.143
5.000 0.100 6.223 0.330 9,151 0.376 7.785
10.000 0.048 12,171 0.162 18.105 0.187 15.595
@ 1.551 1.847 1.790 1.598 1.180 0.469
7 1.000 0.913 1.595 2.002 1.870 2.002 1.595 0.913
0.900 0.814 1,362 2.089 1.722 2.202 1.581 1.208
0.800 0.811 1.150 2.262 1.525 24685 1464 1.538
0.700 0.857 0.067 2.516 1.323 2.802 1.307 1.910
0.600 0.943 0.803 2.872 1.124 3.250 1131 2.359
0.500 1.080 0.850 3.382 0.828 3.875 0.947 2.948
0.400 1.297 0.507 4,156 0.735 4.812 0.758 3.790
0.300 1.860 0.372 5.454 0.848 e.370 0.508 5.148
0.200 2.242 0.242 8.057 0.380 0.484 0.378 7.802
0.100 4701 0.119 15.872 0.178 18.818 0.188 15.852
o0 1.559 1.887 1.866 1.765 1.583 1.181 0.456
n Ry/R,, L, C, Lg C, Lyg Cq j

The transformation is affected through the following
formulas:

- G
C= It R (Eq.3-12)
and
— RL,
L=g= (Fq. 3-13)
where,

C = the final capacitor value,

= the final inductor value,
= a low-pass prototype element value,
L = a low-pass prototype element value,
R = the final load resistor value,
f. = the final cutoff frequency.

The normalized low-pass prototype source resista
must also be transformed to its final value by mul
plying it by the final value of the Ioad resistor (
ample 3-5). Thus, the ratio of the two always remals
the same,
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xia-5A. Chebyshev Low-Pass Prototype Element
Values for 0.1-dB Ripple

1.355 0.992 2.148 1.585 1.341
1429 0.779 2.348 1.429 1.700
1.867 0.576 2.730 1.185 2.243
2.000 0.440 3.227 0.967 2.856
2.500 0,329 3.961 0.760 3.698
3.333 0.233 5178 0.560 5.030
5.000 0.148 7.607 0.367 7.614

10.000 0.070 14.887 0.180 15.230
w0 1.511 1.768 1.455 0.673
n R L/ Ry Ll C, Ly Cy
Rg 11 Ly

C; 1 C.l Ry

[ T

The process for designing a low-pass filter is a very
Wle one which involves the following procedure:

De_ﬁne the response you need by specifying the re-
Quired attenuation characteristics at selected fre-
Quencies.

Normalize the frequencies of interest by dividing
em by the cutoff frequency of the flter. This step
Ites your data to be in the same form as that of
€ attenuation curves of this chapter, where the

peint on the curve is; '

.-}
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EXAMPLE 35

Scale the low-pass prototype values of Fig. 3-19 (Exam-
ple 34) to a cutoff frequency of 50 MHz and a load resis-
tance of 250 ohms,

Solution

Use Equations 3-12 and 3-13 to scale cacli cumponent
as follows:

_ 3546
~ 27(50 X 109){250)
=45 pF
C = 9.127
= B (50 x 109)(350)
=116 pF
C, = 7.889
2m{50 x 108)(250)
= 100 pF
_ (230)(0.295)
T 2m(50 X 108)
= 235nH
(250)(0.3662
L= 2n(50 % 10%)
= 291 nH

The source resistance is scaled by multiplying its normal-
ized value hy the final value of the load resistor,

R-(tlnu) = 0.2(250)
= 50 ohms

The final circuit appears in Fig. 3-21.

Fig. 3-21. Low-pass filter circuit for Example 3-5.

3. Determine the maximum amount of ripple that you
can allow in the passband. Remember, the greater
the amount of ripple allowed, the more selective the
filter is. Higher values of ripple may allow you to
eliminate a few components,

4. Match the normalized attenuation characteristics
(Steps 1 and 2) with the attenuation curves pro-
vided in this chapter. Allow yourself a small “fudge-
factor” for good measure. This step reveals the mini-
mum number of circit elements that you can get
away with—given a certain Blter type.

5. Find the low-pass prototype values in the tables,

6. Scale all elements to the frequency and impedance
of the final design,

Example 3-8 diagrams the process of designing a low-
pass filter using the preceding steps.



. A . 1.301
) 2.380 1.488 1.488
, . 1.300 1.282 2,582 1.382 1.738
0.700 * 1,358 L1117 2.868 1.244 2,062
0.600 1.470 0.947 3.269 1,085 2.484
0.500 1.654 0.778 3.84. 0913 3.055
0.400 1.854 0.812 4.720 0.733 3.885
0.300 2,477 0.451 6.196 0.550 5.237
0.200 3.546 0.295 9,127 0.368 7.889
0.100 6.787 0.115 17.957 0.182 15.745
o0 1.561 1.807 1,788 1417 0.651
6 1.355 0.942 2.080 1.659 2.247 1.534 1.277
1.429 0.735 2.249 1.454 2,544 1.405 L6298
1.887 0.542 2.600 1183 3.064 1.185 2.174
2.000 0.414 3.088 0.858 3712 0.979 2,794
2.500 0.31¢ 3.765 0.749 4.851 0.778 J.645
3.333 0.220 4.927 0.551 6.195 0.580 4.993
5.000 0.139 7.250 0.381 281 0.3584 7.618
10, 0.067 14,220 0.178 18.427 0.190 15.350
o 1.534 1.884 1.831 1,749 1.394 0.638
7 1.000 1.262 1.520 2939 1.880 2.239 1.520 1.262
0.900 1.249 1.395 2.361 1.578 2.397 1.459 1.447
0.800 1.255 1.245 2,548 1.443 2,624 1.362 1.697
0.700 L310 1.083 2.819 1.283 2,042 1.233 2.021
0.600 1417 0917 3.205 1.209 3.384 1.081 2.444
0.500 1.505 0.753 3,764 0.928 4.015 0.914 3.018
0.400 1.885 0.593 4.618 0.742 4.970 0.738 3.855
0.300 2392 0.437 6.054 0.556 6.569 0.557 5217
0.200 3.428 0.286 8.937 0.389 2.770 0.372 7.890
0.100 6.570 0.141 17.803 0.184 19.378 0.180 15.813
@ 1.575 1.858 1021 1.827 1.734 1.379 0.831
n Rg/R,, L, C, Ly C, Cq L,

HIGH-pASS FILTER DESIGN

Once you have learned the mechanics of low-pass
ter design, high-pass design becomes g snap. You can
use all of the attenuation responge curves presented,
us far, for the low-pass filters by simply inverting
e £/f, axis. For Instance, g 5-element, 0.1-dB-ripple
pass filter will produce an attenuation
of about g9 gp at an f/f, of 3 ( Fig. 3-18). 1f you were
Working instead with a high-pass filter of the same
Size and type, you could stil] use Fig. 3-16 to tel] you

that at an f/f. of 1/3 (or, £/f= 3)a S-element, 0.1{
dB-ripple Chebyshev high-pass filter wilr also produce:
an attenuation of 60 dB, This Is obviously more con-
venient thap having to refer to more than one set of
curves, ‘

After finding the response which satisfies all of the'
Tequirements, the pext Step is to simply refer to the
tables of low-pass Profotype values and copy downi

ues for the elements are then obtained directly fron=
the low-pags Prototype values 5 follows (refer to=
Fig. 3-24).
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EXAMPLE 3.8
Design a low-pass filter to meet the following specifica-
ﬂqn.!:
f.=35 MHZ,
Response greater than 60 dB down at 105 MHz,
. Maximally flat passband—ng ripple,
i R» = 50 ohms,
b R = 500 ohms.

#e
Solution
The need for a maximally flat passband eutomatically in-
dicates that the design must be a Butterworth response,
e first step in the design process is to normalize every-
$hing. Thus,

Re_ 50
e R 500
=0.1

;[eyf, normalize the frequencies of iuterest 50 that they may
be found in the graph of Fig. 3-9. Thus, we have:

foa __ 105 MHz

fun - 35 MHZ

=3

. We next look at Fig. 3-9 and find a response that is down
| gtleast 60 dB at a frequency ratio of £/f, — 3. Fig. 3-9 in-
dicates that it will take a minimum of 7 elements to provide
the attenuation specified, Referring to the catalog of Butter-
worth low-pass prototype values given in Table 3-2 yields
the prototype circuit of Fig. 3-22,

0.142

0.067

0.182

Fig, 3-22, Low-pass prototype circuit for Example 3-8,

We then scale these values using Equations 3-12 and

313, The first two values are worked out for you.
C = 2.257
"= 27 (35 % 109)500
=2IpF -
L= (500)(0.087)
T (35 % 108)
s'milarly, = 152nH
C=g7 PF,
G = 153 prF,
G =143 pF,
L= 323 nH,
=414 nH,
R: ‘—'"ggooh;lns,
= ohms.
The

fing} circuit is shown in Fig. 3-23.

500 12

A

- -

W—m Low-pass filter circuit for Example 3-8,

Table 3.6A, Chebyshev Low-Pass Prototype Element
Values for 0.5-dB Ripple
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n L,
2
2.500 0.564 3.185
3.333 0.375 4411
5.000 0.228 8.700
10.600 0.105 13.322
0 1.307 0.975
3 1.000 1.864 1.280 1.834
0.800 1.918 1.209 2,028
0.800 1.097 1.120 2,237
0.700 2.114 1.015 2.517
0.500 2.557 0.759 3,438
0.400 2985 0.815 4242
0.300 3.729 0.483 5578
0.200 5.254 0.309 8.225
0.100 9.890 0.153 16.118
o0 1.572 1.518 0.932
4 1.984 0.920 2.588 1,304 1.826
2,000 0.845 2.720 1.238 1.985
2.500 0518 3.766 0.869 3.121
3.333 0,344 5.120 0.621 4.480
5.000 0.210 7.708 0.400 6.987
10.000 0.098 15.352 0.194 14,282
= 1.438 1.889 1.521 0913
n Cy

Simply replace each filter element with an
element of the Opposite type and with a re-
ciprocal value. Thus, L, of Fig. 3-24B is equal
to 1/C, of Fig. 3-24A. Likewise, C, = I/L,
and La = 1/03.

Stated another way, if the low-pass prototype indi-

cates a capacitor of 1,181 farads, then, use an -induct
with a value of 1/1.181 = 0.847 henry, instead, for

or
a

high-pass design. However, the source and Joad re-

sistors should not be altered,

The transformation process results in an attenuation
characteristic for the high-pass filter that is an exact
mirror image of the low-pass attenuation characteris-
tic. The ripple, if there is &ny, remains the same and
the magnitude of the slope of the stopband (or pass-
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Table 3-6B. Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple
Rg L, Le
n RS/BL Cl L2 C3 Lg C5 LG C'T
5 1.000 1.807 1.303 2.691 1.303 1.807
0.900 1.854 1.222 2.849 1.238 1.970
0.800 1.926 1.126 3.060 1157 2.185
0.700 2.035 1.015 3.353 1.058 2.470
0.600 2.200 0.890 3.763 0.942 2.861
0.500 2457 0.754 4.367 0.810 3414
0.400 2.870 0.609 5.296 0.664 4,245
0.300 3.588 0.459 68.871 0.508 5.625
0.200 5.084 0.308 10,054 0.343 8.387
0.100 9.558 0.153 19.647 0.173 16.574
] 1.830 1.740 1.922 1.514 0.503
] 1.984 0.905 2.577 1.368 2713 1.299 1.796
2,000 0.830 2.704 1.291 2.872 1.237 1.956
2.500 0.508 3.722 0.890 4.109 0.881 3.103
3.333 0.337 5.055 0.632 5.699 0.635 4.481
5.000 0.206 7.615 0.406 8.732 0.412 7.031
10.000 0.096 15.188 0.197 17.681 0.202 14.433
7 1.000 1.790 1.296 2,718 1.385 2718 1.296 1.790
0.900 1.835 1.215 2.869 1.308 2.883 1.234 1.953
0.800 1.805 1.118 3.076 1.215 3107 1.155 2.168
0.700 2.011 1.007 3.364 1,105 3.416 1.058 2455
0.600 2,174 0.882 3.772 0.979 3.852 0.944 2.848
0.500 2.428 0.747 4.370 0.838 2.289 0.814 3.405
0.400 2.835 0.604 5.295 0.685 5.470 0.669 4.243
0.300 3.546 0.455 6.867 0.522 T7.134 0.513 5.835
0.200 3.007 0.303 10.049 0.352 10.496 0.348 8.404
0.100 9.456 0.151 19.649 0.178 20.631 0.178 16.665
o 1.848 1.777 2.031 1.789 1.924 1.503 0.895
n R,/R, I, C, L, c, T c, L,

band) skirts remains the same. Example 3-7 illustrates
the design of high-pass filters.
A closer look at the flter designed in Example 3-7
reveals that it is symmetric. Indeed, all filters_given
termination class are symmetric. The
equal termination class of filter thus yields a circuit
that is easier to design (fewer calculations) and, in
most cases, cheaper to build for a high-volume product,
due to the number of equal valued components.

THE DUAL NETWORK

Thus far, we have been referring to the group of
low-pass prototype element value tables presented
and, then, we choose the schematic that is located

either above or below the tables for the form of th
filter that we are designing, depending on the valw
of Ry./Rs. Either form of the filter will produce exact;
the same attenuation, phase, and group-delay charac
teristics, and each form is called the dual of the othet

Any filter network in a ladder arrangement, such a
the ones presented in this chapter, can be change
into its dual form by application of the following rules

1. Change all inductors to capacitors, and vice-vers:
without changing element values. Thus, 3 henrie
becomes 3 farads.

2. Change all resistances into conductances, and vice
versa, with the value unchanged. Thus, 3 ohms be
comes 3 mhos, or 15 ohm.
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0.549
1 Cz
0.847 0.847 1
L L,

(B) Equivalent high-pass prototype circuit.
Tig. 3-24. Low-pass to high-pass filker transformation.

{?ange all shunt branches to serjes branches, and
i loe-versa,

ME™3-26 shows a ladder network and its dual repre-
:afntion,

‘Dual networks are convenient, in the case of equal
W¥milnations, if you desire to change the topology of
wter without changing the response. It is most
‘used, as shown in Examplc 3-7, to eliminate an

sary inductor which might have crept into the
rough some other transformation process.

- n
%M_L_tgergfgrg, exhibit higher losses. These
osses tend to cause insertion loss, in addition to gen-
y degrading the overall performance of the flter.
vSanumber ind”ﬁm“-—in-any_mmk_mld,
: , be reduced whenever pa ible.
€ experimentafion with dual networks having
terminations will reveal that you can quickly
& rourself into trouble if you are not careful. This
R “Pecially true if the load and source resistance
design criteria and cannot be changed to suit
Aeeds of your filter. Remember, when the dual of a
With unequal terminations is taken, then, the
Ons must, by definition, change value as

BANDPASS FILTER DESIGN

-Pass prototype circuits and response curves
s chapter can also be used in the design
Pass filters. This is done through a simple
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Table 3-7A, Chebyshev Low-Pass Prototype Element
Values for 1.0-dB Ripple

L, L,

Rs

3 1000 2.216 1.088 2.218
0.500 4.431 0.817 2.216

0.333 6.647 0.726 2218

0.250 8.862 0.650 2.218

0.125 17.725 0.612 2.216

o0 1.652 1.460 1.108

4 3.000 0.853 4.411 0.814 2.5358
4.000 0.452 7.083 0.612 2.848

8.000 0.209 17.164 0.428 3.281

o 1.350 2.010 1.488 1108

transformation process similar to what was done in the
high-pass case.

The most difficult task awaiting the designer of a
bandpass filter, if the design is to be derived from the
low-pass prototype, is in specifying the bandpass at-
tenuation characteristics in terms of the low-pass re-
sponse curves. A method for doing this is shown by
the curves in Fig. 3-27. As you can see, when a low-
pass design is transformed into a bandpass design,
the attenuation bandwidth ratios remain the same.
This means that a low-pass filter with a 3-dB cutoff
frequency, or a bandwidth of 2 kHz, would transform
into a bandpass flter with a 3.dB baudwidth of 2
kHz. If the response of the low-pass network were
down 30 dB at a frequency or bandwidth of 4 kHz
(f/f.=2), then the response of the bandpass network
would be down 30 dB at a bandwidth of 4 kHz. Thus,
the normalized f/f, axis of the low-pass attenuation
curves becomes a ratio of bandwidths rather than fre-
quencies, such that:

BW _ f
BW. " E (Eq. 3-14)
where,
BW = the bandwidth at the required value of at-

tenuation,

BW, = the 3-dB bandwidth of the bandpass filter.
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ototype Element Values for 1.0-dB Ripple

Rg L

Ly

n By/Ry, C, L, Cs L, Cs Lg Cq
5 1.000 2.207 1,128 3.103 1.128 2.207
0.500 4414 0.565 4.653 1.128 2.207
0.333 6.622 0.378 6.205 1128 2.207
0.250 8.829 0.282 7.756 1.128 2.207
0.125 17.857 0.141 13.961 1.128 2,207
o 1.721 1.8145 2,081 1.493 1.103
6 3.000 0.679 3.873 0.771 4711 0.969 2.406
4.000 0.481 5.644 0.476 7.351 0.849 2,582
8.000 0.227 12,310 0.198 16.740 0.726 2.800
e 1.378 2.007 1.69¢ 2.074 1.494 1.102
7 1.000 2.204 1.131 3.147 1.194 3.147 1.131 2.204
0.500 4.408 0.566 6.293 0.895 3.147 1.131 2.204
0.333 6.612 0.377 9.441 0.798 3.147 1131 2.204
0.250 8.6815 0.283 12.588 0.747 3.147 1.131 2.204
0.125 17.631 0.141 25.175 0.671 3.147 1131 2.204
w0 1.741 L677 2.155 1703 2.079 1484 1.102
n Ry/Rg L, Cs L, C, Ly C, L,

Often a bandpass response is not specified, as in
Example 3-8. Instead, the requirements are often
given as attenuation values at specified frequencies
as shown by the curve in Fig. 3-28. In this case, you
must transform the stated requirements into informa-
tion that takes the form of Equation 3-14. As an ex-
ample, consider Fig. 3-28. How do we convert the
data that is given into the bandwidth ratios we need?
Before we can answer that, we have to find f;. Use
the following method.

The frequency response of a bandpass filter exhibits
geometric symmetry. That is, it is only symmetric when
plotted on a logarithmic scale. The center frequency
of a geometrically symmetric filter is given by the
formula:

f. =Vt (Eq. 3-15)

where f, and f, are any two frequencies (one above
and one below the passband) having equal attenua-
tion. Therefore, the center frequency of the response
curve shown in Fig. 3-28 must be

f.=+/{45)(75) MHz
= 58.1 MHz

We can use Equation 3-15 again to find f;.

58.1 = /T;(125)

or,

f3 = 27T MHz

Now that f; is known, the data of Fig. 3-28 can
put into the form of Equation 3-14.
BW.oas _ 125 MHz — 27 MHz
BW;4n = 75 MHz — 45 MHz
=3.27

To find a low-pass prototype curve that will satis‘l!
these requircinents, simply refer to any of the pertinel
graphs presented in this chapter and find a respo
which will provide 40 dB of attenuation at an f/f
3.27. (A fourth-order or better Butterworth filter

do quite nicely. )

The actual transformation from the low-pass to |
bandpass configuration is accomplished by resonal
each low-pass element with an element of the oppo
type and of the same value. All shunt elements of
low-pass prototype circuit become parallel-reso
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an LClhigh,pass flter with an f. of 60 MHz and
attenimation of 40 dB at 30 MHz. The source
resistance are equal at 300 obhms. Assume that a
‘passband ripple is tolerable.

ipormalize the attenuation requirements so that the
§ attenuation curves may be used.

_f‘_ 30 MHz
fe - 60 MHz

=05

g, we get:
f_
=
elect a normalized low-pass filter that offers at least
;ittenuatiuu ut a ratio of f./f = 2. Reference to Fig.
enuation response of 0.5-dB-ripple Chebyshev fil-
ndicates that & normalized n = 5 Chebyshev will pro-
he needed attenuation. Table 3-8 contains the ele-
ues for the correspending network. The normalized
prototype circuit is shown in Fig. 3-254, Note that
chematic below Table 3-6B was chosen as the low-pass
pe circuit rather than the schematic above the table.
BYeason for doing this will become obvious after the next
"Keep in mind, however, that the ratic of Re/Ry, is the
the ratio of Re/Rs, and is unity, Therefore, it does
tter which form is used for the prototype circuit.
Next, transform the low-pass circuit to a high-pass net-
%k by replacing each inductor with a capacitor, and vice-
, using reciprocal element values as shown in Fig.
B. Note here that had we begun with the low-pass pro-
bype circuit shown above Table 3-8B, this transformation
d have yiclded a flter contaiuing three inductors rather
the two shown in ‘Fig, 3-25B. The object in any of
Blter designs is to reduce the number of inductors in
al design. More on this later.
he final step in the design process is to scale the net-
ﬁ in both impedance and frequency using Equations
d 3-13. The first two calculations are done for you.

{A) Normalized low-pass filter circuit.

1 1/1.807
R C

1 G Cs
1/1.303 1/1.303 1
Ly L, R

{B) High-pass transformation.

1/2.691 1/1.807

C

Rg
: 30002 49

(C) Frequency and impedance-scaled flter circuit.
Fig, 3-25. High-pass filter design for Example 3-7.

C 5
3

1 3 C
pF 3.3 pF 4.9 pF
Ly Sf6l1nH L, 611 nH Ry 3300 8

1
Lo 300(1.303)
= 27 (60 % 10°)
=611 nH

The remaining values are:

Find the Butterworth low-pass prototype circuit which,
transfouned, would satisfy the following bandpass
i Tequirements:
BW.ae = 2 MHz
i BW..us = 6 MHz

|

Ote that we are not concerned with the center frequency
® bandpass response just yet. We are only concerned

[
ﬁ.- the relationship between the above requirements and

C:=33 pF
1 Ci = 4.9 pF
o 1.867 L. = 811 nH
' T 2x(60 x 108)(300)
| = 49 pF The final filter circuit is given in Fig, 3-25C.
M—____
EXAMPLE 3.

the low-pass response curves. Using Equation 3-14, we
have:

BW f _ BWyas

BW.™ f. ~ BW,a

_BMHz
- 2MHz

=3

Therefore, turn to the Butterworth response curves shown
in Fig. 3-9 and find a prototype value that will pruvide 40
dB of attenuation at an f/f. = 3. The curves indicate a 5-
element Butterworth filter will provide the needed attenu-
ation,
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(B} Its dual form.
Fig. 3-26. Duality.

3de

30dB

BW, \

BW,
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Table 3-8A, Bessel Low-Pass Prototype Element Values

n RS/RL Cl Lz Cs L4

3dB

33 dBr

(A) Low-pass prototype response.

BW,

2 1.000 0.576 2.148
1.111 0.508 2.310

1.250 0.443 2,510

1.429 0.380 2,764

1.867 0.319 3.099

2.000 0280 3.5685
2.500 0.203 4258

3.333 0.149 5.405

5.000 0.097 7.688

10.000 0.047 14,510

3 1.000 0.337 9.701 2.203
0.800 0.371 0.865 2.375

0.700 0.466 0.658 2.858
0.600 0.537 0.558 3216
0500  0.635 0.459 3.714
0.400 0.783 0.362 4.457
0.300 1.028 0.267 5.689
0.200 1.518 0.175 8.140
0.100 2.983 0.086 15470

1111 0209 0742 0967 2414
1429 0160 0941 0741 2907

34D

—40 dB

{ B) Bandpass response.
Fig. 3-27. Low-pass to bandpass
transformation bandwidths.

[
|
|
[
1
I
|
+
1
|
]
1
1

i, B I,

Fig. 3-28. Typical bandpass specifications.

22C>222
EEE

Fig. 3-29. Low-pass to bandpass circuit transformation

circuits, and all series elements become serjes-resondl
circuits. This process is illustrated in Fig. 3-30.3%
To complete the design, the transformed flter:
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Table 3-8B. Bessel Low-Pass Prototype Element Values

g
Rg La Ly La
n Rs/Ry, C; L, Cs L, Cs Ly Cy
5 1.000 0.174- 0.507 0.804 1.111 2.258
0.500 0.193° 0.454 0.889 0.995 2.433
0.800 0.215 0.402 0.996 0.879 2.850
0.700 0.245 0.349 1.132 0.784 2.927
0.600 0.284 0.298 1.314 0.051 3.295
0.500 0.338 0.247 1.567 0.538 3.808
0.400 0419 0.196 1.946 0427 4573
0.300 0.555 0.146 2.577 0.317 5.843
0.200 0.825 0.008 3.835 0210 8.375
0.100 1.635 0.048 7.604 0.104 15.949
o0 1.513 1.023 0.753 0473 0.162
8 1.000 0.137 0.400 0.639 0.854 1,113 2.285
1.111 0.122 0.443 0.573 0,948 0.698 2.439
1.250 0.108 0.496 0.508 1.060 0.881 2.655
1.429 0.004 0.564 0.442 1.207 0.767 2.933
1.667 0.080 0.855 0.378 1.402 0.853 3.300
2.000 0.067 0.782 0.313 1.675 0.541 3.812
2.500 0.053 0.973 0.249 2.084 0.429 4577
3.333 0.040 1.289 0.186 2.763 0.319 5.847
5.000 0.026 1.289 0.123 4.120 0.211 8.378
10.000 0.013 3.815 0.061 8.186 0.105 15.951
@ 1.512 1.033 0.813 0.607 0.379 0.129
7 1.000 0.111 0.326 0.525 0.702 0.869 1.105 2266
0.900 0.122 0.292 0.582 0.630 0.983 0.990 2.440
0.800 0.137 0.259 6.652 0.559 1.080 0.875 2,658
[NV 0] 0.156 0.228 0.743 0.487 1.231 0.782 2,932
0.600 0.182 0.193 0.863 0.416 1.431 0.649 3.208
0.500 0217 0.180 1.032 0.346 1.711 0.537 3.809
0.400 0.270 0.127 1.285 0.278 2.130 0.427 4.572
0.300 0.358 0.035 1.705 0.206 2.828 0.318 5.838
0.200 0.534 0.083 2.545 0.137 4221 0210 8.262
0.100 1.061 0.031 3.062 0.068 8.397 0.104 15.917
o 1.503 1.029 0.835 0875 0.503 0.311 0.105
n HS/‘HL ‘L’l (;2 L3 (;4 L5 Cﬂ LT

R PR

—_—
fin

Fig. 3.30. Typical band-rejection filter curves.

then frequency- and impedance-scaled using the fol-
lowing formulas. For the parallel-resonant branches,

__GCs
C=%RE (Eq. 3-16)
RB
L :———-—'—2 fozL'n (Eq. 3-17)

and, for the series-resunant branches,

___B ‘
C_—27rf.,2—C,,R (Eq318)



RL,

L=53

(Eq. 3-19)

where, in all cases,

R = the final load impedance,

B = the 3-dB bandwidth of the final design,

f, = the geometric center frequency of the final de-
sign,

L, g: the normalized inductor bandpass element
values,

C, = the normalized capacitor bandpass element
values,

Example 3-9 furnishes one final example of the pro-
cedure for designing a bandpass filter.

SUMMARY OF THE. BANDPASS
FILTER DESIGN PROCEDURE

1. Transform the bandpass requirements into an
equivalent low-pass requirement using Equation
3-14.

2. Refer to the low-pass attenuation curves provided in
order to find a response that meets the requirements
of Step 1.

3. Find the corresponding low-pass prototype and
write it down.

4. Transform the low-pass network into a bandpass
configuration.

5. Scale the bandpass configuration in both impedance
and frequency using Equations 3-16 through 3-19.

BAND-REJECTION FILTER DESIGN

Band-rejection filters are very similar in design ap-
proach to the handpass flter of the last section. Only,
in this case, we want to reject a certain group of fre-
quencies as shown by the curves in Fig. 3-30.

The band-reject filter lends itself well to the low-
Dass prototype design approach using the same proce-
dures as were used for the bandpass design. First,
define the bandstop requirements in terms of the low-
Dass attenmation curves. This is done by using the
inverse of Equation 3-14. Thus, referring to Fig. 3-30,
we have:

BW, f,—f,

BW - f3 - f2

This sets the attenuation characteristic that is needed
and allows you to read dircctly off the low-pass at-
tenuation curves by substituting BW,./BW for £./f on
the normalized frequency axis. Once the number of
elements that are required in the low-pass prototype
circuit is determined, the low-pass network is trans-
formed into a band-reject configuration as follows:

Each shunt element in the low-pass prototypc
circuit is replaced by a shunt series-resonant
circuit, and each series-element is replaced by
a series parallel-resonant circuit.

RF Cmcurr Desion

EXAMPLE 3-9
Design a bandpass filter with the following requirements:

f. =75 MHz Passband Ripple =1 dB
BW,a = 7 MHz R. = 50 ohms
BW.usan = 35 MHz Ri = 100 chms

Solution

Using Equation 3-14:

BWAMIB _ 3_5‘
BwldB - 7

=5

Substitute this value for £/f. in the low-pass attenuation
curves for the 1-dB-ripple Chebyshev response shown in
Fig. 3-18. This reveals that a 3-element filter will provide
about 50 dB of attenuation at an f/f. = 5, which is more
than adequate. The corresponding element values for this
filter can be found in Table 3-7 for an Rs/Ry == 0.5 and an
n = 3. This yields the low-pass prototype circuit of Fig.
3-32A which is transformed into the bandpass prototype
circuit of Fig. 3-32B. Finally, using Equations 3-18 through
3-19, we obtain the final circuit that is shown in Fig. 3-32C.
The calculations follow. Using Equations 3-16 and 3-17:

4.431

Gi= 2a{100)(7 x 10°9)
= 1007 pF
L= (100)(7 % 108)
2a(T5 % 108)2(4.431)
= 447 nH
Using Equations 3-18 and 3-19:
C = 7 x 108
~ 2n(75 % 106)2(0.817)100
=24 pF
}{0.8
La= (210(07 X 13;,))
= 1.86 uH
Similarly,
Cy = 504 pF .
L, =893 nH -

T

This is shown in Fig. 3-31. Note that both elementszﬂ
each of the resonant circuits have the same normali
value.

Once the prototype circuit has been transformed inte:
its band-reject configuration, it is then scaled in im
pedance and frequency using the following formulas
For all series-resonant circuits:

a L | 6 | 9I
3 g 3

Fig. 3-31. Low-pass to band-reiect transformation.
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(A) Low-pass protutype circuit,

0.500 017 0817

22160 22169 1.000
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1

8.93 nH 100 @

{C)Final cireuit with frequency and impedance scaled.

Fig. 3-32. Bandpass filter design for Example 3-9.

— Ideal
Ieertion Loss

Low Q

Fig. 3-33. The effcct of fuile-Q elements
on filter response.

c-= WCRB‘E (Eq. 3-20)

L= %—%ﬁ (Eq.3-21)
Por a) parallel-resonant circuits:

C= ﬁﬁc_n (Eq.3-22)

L=g (Eq.3-23)

"z, in all cases,
Hr"‘ the 3-dB bandwidth,
= the final load resistance,
-Q= the geometric center frequency,
& = the normalized capacitor band-reject clement

Valye,
If!v"-; the normalized inductor band-reject element
Value,

65

THE EFFECTS OF FINITE Q

Thus far in this chapter, we have assumed the in-
ductors and capacitors used in the designs to be
lossless. Indeed, all of the response curves presented
in this chapter are based on that assumption. But we
know from our previons study of Chapters 1 and 2
that even though capacitors can be approximated as
having infinite Q, inductors cannot, and the effects
of the finite-Q inductor must be taken into account
in any filter design.

The use of finite element Q in a design intended for
lossless elements causes the following unwanted effects
(refer to Fig. 3-33):

1. Insertion loss of the filter is increased whereas the
final stopband attenuation does not change. The
relative attenuation between the two is decreased.

2. At frequencies in the vicinity of cutoff (f,), the
response becomes more rounded and usually results
in an attenuation greater than the 3 dB that was
originally intended.

3. Ripple that was designed into the passband will be
reduced. If the element Q is sufficiently low, ripple
will be totally eliminated.

4. For band-reject flters, the attenuation in the stop-
band becomes finite. This, coupled with an increase
in passband insertion loss, decreases the relative
attenuation significantly.

Regardless of the gloomy predictions outlined
above, however, it is possible to design filters, using
the approach outlined in this chapter, that very closely
resemble the ideal response of each network. The key
is to use the highest-Q inductors available for the
given task. Table 3-8 outlines the recommended mini-
mum element-Q requirements for the filters presented
in this chapter. Keep in mind, however, that anytime
a low-Q component is used, the actual attenuation
response of the network strays from the ideal response
to a degree depending upon the element Q. It is,
therefore, highly recommended that you make it a
habit to use only the highest- Q components available.

Table 3-9. Filter Element-Q Requirements

Minimum Element
Filter Type Required
Bessel 3
Butterworth 15
0.01-dB Chebyshev 24
0.1-dB Chebyshev 39
0.5-dB Chebyshev 57
1-dB Chebyshev 75

The insertion loss of the filters presented in this
chapter can be calculated in the same manner as was
used in Chapter 2. Simply replace each reactive ele-
ment with resistor values corresponding to the Q
of the element and, then, exercise the voltage division
rule from source to load.



