ECE 6180 Stepped-Impedance Filter Design

Portfolio Question: How do you design a stepped-impedance filter?

Text Section 8.6

What is a stepped impedance filter?

- Made up of high impedance (thin) and low impedance (thick) lines
- Want Z high / Z low to be as large as possible, so this is determined by manufacturing.
- In our case, Z high = 100 ohms, and Z low = 10 ohms.
- Impedances stay the same, but lengths change for each section. Each length is less than $\lambda / 4$.

Why a stepped impedance filter?

- Smaller than stub-filter
- Easier to design (no Kuroda identities!)

Why NOT a stepped impedance filter?

- Approximations in the design equations make them less accurate

Analysis of stepped impedance filters:
(Note: these are analysis steps, not design steps. You don't do these each time you design a filter, they are just to show how the stepped impedance filter is derived.)

1. For a length of transmission line: (see table p.208)

$$
\begin{aligned}
& \text { Zo } \boldsymbol{\beta} \mathrm{L} \\
& A=\cos (\beta \ell) \\
& B=j Z o \sin (\beta \ell) \\
& C=j Y o \sin (\beta \ell) \\
& D=\cos (\beta \ell)
\end{aligned}
$$

2. Convert from ABCD to Z-matrix (table p. 211)

$$
\begin{aligned}
& Z_{11}=Z_{22}=\frac{A}{C}=-j Z o \cot \beta \ell \\
& Z_{12}=Z_{21}=\frac{1}{C}=-j Z o \csc \beta \ell
\end{aligned}
$$

3. Calculate the Z-matrix of a T-junction circuit (p.195)

$$
\begin{aligned}
& Z_{11}=Z_{22}=Z_{A}+Z_{C} \\
& Z_{12}=Z_{21}=Z_{C}
\end{aligned}
$$

4. Relate Z_{A}, Z_{C} to Z_{11}, etc. (Solve for Z_{11}, etc.)
$Z_{A}=Z_{11}-Z_{12}=-j Z o\left[\frac{\cos \beta \ell-1}{\sin \beta \ell}\right]=j Z o \tan \left(\frac{\beta \ell}{2}\right)$
$Z_{C}=Z_{12}=-j Z o \csc \beta \ell$
5. $\operatorname{Are} \mathrm{Z}_{\mathrm{A}}$ and Z_{C} inductors or capacitors?

For a length of line with $\beta \mathrm{L}<\lambda / 2$:

$$
\mathrm{Z}_{\mathrm{A}}=+ \text { imaginary part (inductor) }
$$

$\mathrm{Z}_{\mathrm{C}}=$ - imaginary part (capacitor)

$$
\begin{aligned}
& Z_{A}=j \frac{X}{2}=-j Z o\left[\frac{\cos \beta \ell-1}{\sin \beta \ell}\right]=j Z o \tan \left(\frac{\beta \ell}{2}\right) \Rightarrow X=2 Z o \tan \left(\frac{\beta \ell}{2}\right) \\
& Z_{C}=\frac{1}{j B}=-j Z o \csc \beta \ell \Rightarrow B=\frac{1}{Z o \csc \beta \ell}=\frac{1}{Z o} \sin \beta \ell
\end{aligned}
$$

5. Assume a short length of line ($\beta<\lambda / 4$)
(Here are the approximations that make this method less than perfectly accurate...)
a. When Zo is large:

$$
\begin{aligned}
& X \approx 2 Z o\left(\frac{\beta \ell}{2}\right)=Z o \beta \ell \\
& B \approx 0 \\
& \mathrm{X}_{\mathrm{L}}=\mathrm{Zo} \beta \mathrm{~L} \\
& \mathrm{~N}_{\mathrm{W}} \mathrm{~N}
\end{aligned}
$$

b. When Zo is small:

$$
\begin{aligned}
& X \approx 0 \\
& B \approx \frac{1}{Z o} \beta \ell \\
& \Psi_{\mathbf{B}}^{\mathbf{c}}=\mathrm{Yo}_{\mathbf{o}} \beta \mathrm{L}
\end{aligned}
$$

6. Solve for lengths of lines that are needed for filter design:

$$
\begin{aligned}
& \beta \ell=\frac{L Z o}{Z_{\text {high }}} \\
& \beta \ell=\frac{C Z_{\text {low }}}{Z o}
\end{aligned}
$$

Note: These lengths are given in RADIANS. HP/Eesof ADS Linecalc (e_eff) is given in DEGREES. Multiply these values by $180 / \pi$ to get them in degrees.

Filter Design Steps:

1. Design the lumped element filter as before (sections 8.3 and 8.4)
2. Solve for lengths ($\beta \mathrm{L}$) of each element. (Remember to convert to degrees if using Linecalc.)
