Text Sections: 3.3
Chapter 3, Problem 3 (See Appendix I) and Derive the TM modes of a rectangular waveguide following the methods described here for TE modes.

Rectangular Waveguides

Recall: Method of solution:

1. Solve Helmholtz equation for either Hz (TE) or Ez (TM). This can be done analytically or numerically. In the analytical case, you guess the form of the solution, which will have several unknown constants (like magnitude, phase, number of cycles)
2. Use 3.19 to 3.23 to find transverse components from Ez or Hz .
3. Solve for the constants from the boundary conditions. In metal boundaries, these are that tangential E and normal $\mathrm{H}=0$ on the boundary. Now you have Ez or Hz.
4. Use Maxwell's equation to find the other E or H components.

TE Solution

1. Solve Helmholtz wave equation:

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k_{c}^{2}\right) h_{z}(x, y)=0
$$

a) Use Method of Separation of Variables:
$h_{x}(x, y)=X(x) Y(y)$
b) Substitute into wave equation (Helmholtz equation):

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}+k_{c}^{2} X Y=0
$$

where $\mathrm{k}_{\mathrm{c}}{ }^{2}=\mathrm{k}_{\mathrm{x}}{ }^{2}+\mathrm{k}_{\mathrm{y}}{ }^{2}$
c) Separate the Variables:

$$
\begin{aligned}
& Y\left[\frac{d^{2} X}{d x^{2}}+k_{x}^{2} X\right]=0 \\
& X\left[\frac{d^{2} Y}{d y^{2}}+k_{y}^{2} Y\right]=0
\end{aligned}
$$

d) "Guess" the form of the solution:

$$
h_{z}(x, y)=\left(A \cos _{x} x+B \sin k_{x} x\right)\left(C \cos k_{y} y+D \sin k_{y} y\right)
$$

The unknown constants are $A B C D$. Also k_{x} and k_{y}.
2. Solve for the unknown constants from boundary conditions.
a) Define the boundary conditions

Tangential E fields $=0$ on the metal surfaces (walls of the waveguide)
$\mathrm{e}_{\mathrm{x}}=0$ at $\mathrm{y}=0, \mathrm{~b}$
$e_{y}=0$ at $x=0, a$
b) Obtain appropriate expressions for the boundary condition fields

From equations 3.19:
$E x=\left(-j \omega \mu / \mathrm{k}_{\mathrm{c}}^{2}\right) \partial \mathrm{H}_{\mathrm{z}} / \partial \mathrm{y}$
Ey $=\left(j \omega \mu / k_{c}{ }^{2}\right) \partial H_{z} / \partial x$
So:
$e_{x}(x, y)=\left(-j \omega \mu / k_{c}^{2}\right) k_{y}\left(A \operatorname{cosk}_{x} x+B \sin k_{x} x\right)\left(-C \sin k_{y} y+D \cos k_{y} y\right)$
$e_{y}(x, y)=\left(j \omega \mu / k_{c}^{2}\right) k_{x}\left(-A \operatorname{sink}_{x} x+B \cos k_{x} x\right)\left(C \cos k_{y} y+D \sin k_{y} y\right)$
c) Use boundary conditions to solve for ABCD:

Substitute $e_{x}=0$ at $y=0, b$ into equations above.
$e_{x}(x, 0)=\left(-j \omega \mu / k_{c}^{2}\right) k_{y}\left(A \cos _{x} x+B \sin k_{x} x\right)\left(-C \sin k_{y} 0+D \cos k_{y} 0\right)=0$
So, D = 0
Note that a "trivial solution" also exists if $\mathrm{k}_{\mathrm{y}}=0$
$e_{x}(x, b)=\left(-j \omega \mu / k_{c}^{2}\right) k_{y}\left(A \cos _{x} x+B \sin k_{x} x\right)\left(-C \sin k_{y} b+0 \cos k_{y} b\right)=0$
when $\mathrm{k}_{\mathrm{y}}=\mathrm{n} \pi / \mathrm{b}$ and $\mathrm{k}_{\mathrm{x}}=\mathrm{m} \pi / \mathrm{a}$

Substitute $e_{y}=0$ at $x=0$, a into equations above:
$e_{y}(0, y)=\left(j \omega \mu / k_{c}^{2}\right) k_{x}\left(-A \operatorname{sink}_{x} 0+B \cos k_{x} 0\right)\left(C \cos k_{y} y+D \sin k_{y} y\right)=0$
So, $B=0$
$e_{y}(x, a)=\left(j \omega \mu / k_{c}^{2}\right) k_{x}\left(-A \operatorname{sink}_{x} a+B \cos k_{x} a\right)\left(C \cos k_{y} y+D \sin k_{y} y\right)=0$
So, $\mathrm{k}_{\mathrm{x}}=\mathrm{m} \pi / \mathrm{a}$
Now we can simplify the form:
$\mathrm{e}_{\mathrm{x}}(\mathrm{x}, \mathrm{b})=\left(-\mathrm{j} \omega \mu / \mathrm{k}_{\mathrm{c}}{ }^{2}\right)(\mathrm{n} \pi / \mathrm{b})(-\mathrm{AC}) \cos (\mathrm{m} \pi \mathrm{x} / \mathrm{a}) \sin (\mathrm{n} \pi \mathrm{y} / \mathrm{b})$
$e_{x}(x, b)=A_{m n} \cos (m \pi x / a) \sin (n \pi y / b)$
d) Apply constants to H :
$h_{z}(x, y)=\left(A \cos _{k} x+0 \sin k_{x} x\right)\left(C \cos k_{y} y+0 \sin k_{y} y\right)$
$H_{z}(x, y)=A C \cos (m \pi x / a) \cos (n \pi y / b)=A_{m n} \cos (m \pi x / a) \cos (n \pi y / b) e^{-j \beta z}$
e) Ex, Ey, Hx,Hy components are found from equations 3.19 again.

TE $_{\text {mn }}$ modes:

Modes are numbered m-n, indicating how many cosine wave cycles are in the waveguide.

Cutoff frequency for each mode is different:
$\mathrm{f}_{\mathrm{c}}=\mathrm{k}_{\mathrm{c}} /(2 \pi \sqrt{ } \mu \varepsilon)=$

$$
f_{c_{m n}}=\frac{1}{2 \pi \sqrt{\varepsilon \mu}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}
$$

"Lowest Order Mode" Assuming b>a TE_{10} mode has the lowest cutoff frequency, so will be the first mode in the waveguide.

