ECE 6130 Lecture 4: SMITH CHARTS

Text Section: 2.4

Portfolio Question:
1) Describe and Demonstrate how to use a Smith Chart to find impedance, Vmin, Vmax, SWR, reflection coefficient, etc.

See Chapter 2, Problems 7-12

Smith Chart Circles:

A Smith chart is a graphical representation of the complex reflection coefficient, Γ

Smith Chart for Reflection Coefficient and Load Impedance:

Reflection Coefficient and Load (Z_L) are directly related:

$$\begin{split} &\Gamma = (Z_L / Z_O - 1) / (Z_L / Z_O + 1) = (z_L - 1) / (z_L + 1) \\ &OR \\ &Z_L / Z_O = z_L = (1 + \Gamma) / (1 - \Gamma) \leftarrow This is NORMALIZED load impedance \\ &z_L = r_L + j x_L \end{split}$$

The real and imaginary parts of z_L are functions of Γ , and these functions can be plotted on the same chart. Remember $|\Gamma| \le 1$.

Example: Given Z_L , find Γ using Smith Chart See transparencies (Copies to be made available in copy room) How to find Γ :

1) Find Normalized load Impedance, $z_L = Z_L / Z_O = r_L + j x_L$

- 2) Find intercept of semicircles for r_L and x_L and PLOT z_L
- 3) Draw line from center of smith chart to (or through) z_L
- 4) Read angle of Γ from outside of Smith chart
- 5) Measure $|\Gamma|$ with a protractor and compare to line on bottom of smith chart labeled "Ref. Coeff. E or I"

Zo = 100 ohms

 Z_L = open circuit

1) $z_L = \infty = \infty + j 0$

- 2) PLOT (far right)
- 3) Draw Line through z_L . Read $\angle 0$
- 4) Measure using a protractor (or this one is obviously =1) $|\Gamma| = 1$

 $\Gamma = 1 \angle 0$ (which is what we expect for an open circuit)

 Z_L = open circuit

- 1) $z_L = 0 = 0 + j 0$
- 2) PLOT (far left)
- 3) Draw Line through z_L . Read $\angle 180^\circ$
- 4) Measure using a protractor (or this one is obviously =1) $|\Gamma| = 1$
- $\Gamma = 1 \angle 180^\circ = -1$ (which is what we expect for an short circuit)

 $Z_L = 100 + j 0$ ohms

- 1) $z_L = Z_L / Z_O = 1 + j_0$
- 2) PLOT (center of smith chart)
- 3) Draw Line through z_L . Not so easy ... \angle ?
- 4) Measure using a protractor (or this one is obviously =0) $|\Gamma| = 0$

 $\Gamma = 0 \angle ?$ (which is what we expect for a matched load)

 $Z_L = 100 + j \ 100 \ ohms$

- 1) $z_L = Z_L / Z_O = 1 + j 1$
- 2) PLOT (top right quadrant)
- 3) Draw Line through z_L . about $\angle 63^\circ$
- 4) Measure using a protractor $|\Gamma| = 0.45$

Γ=0.45 ∠63°

 $\Gamma = (z_L - 1) / (z_L + 1) = (0 + j1) / (2 + j1) = 1 \angle 90^{\circ} / 2.236 \angle 26.56^{\circ} = 0.45 \angle 63.43^{\circ}$

How do you find load impedance if given Γ ?

- 1) Plot Γ
- 2) Read $z_L = z_L + j z_L$
- 3) Unnormalize: $Z_L = z_L * Z_O$

Admittance vs. Impedance:

Admittance $y_L = 1 / z_L$

 $\Gamma = (z_L - 1) / (z_L + 1) = (1/y_L - 1) / (1/y_L + 1) = -(y_L - 1) / (y_L + 1) = 180$ out of phase

Steps to find Γ from y_L:

- 1) Find normalized $y_L = Zo / Z_L = g_L + jb_L$
- 2) Plot it (Using same curves g=r and b=x)
- 3) "Transform it through the origin" ... Rotate 180 degrees = draw a line of equal length through the origin. Now you have found z_L
- 4) Read Γ as before

EXAMPLE (See transparencies)

Input Impedance:

 $Z_{in} = Zo [1 + \Gamma e^{-j\beta l}] / [1 - \Gamma e^{-j\beta l}]$

$$z_{in} = Z_{in} \ / \ Zo \ = [1 + \Gamma \ e^{\ -j2\beta l} \] \ / \ [1 - \Gamma \ e^{\ -j2\beta l} \]$$

Define reflection coefficient at the input (NOT Γg) as the reflection coefficient looking into the load frm the input location. $\Gamma_1 = \Gamma_L \angle -2\beta l$

This represents moving $2\beta l$ radians towards the generator.

You can convert this distance to degrees, and read it off the outer circles on the Smith Chart (notice DIRECTION to the generator is marked)

OR $2\beta l = 2(2\pi / \lambda) l = 4\pi (l / \lambda)$ This has been normalized for you on the outside circle around the Smith Chart. Observe that if $l=\lambda$, this represents 2 complete rotations around the Smith Chart. L = $\lambda/2$ represents one complete rotation.

Does this make sense? For a Transmission line of length $L = \lambda/2$, traveling from generator to the load and back would represent a phase shift of 360 degrees ... one complete rotation.

Then $z_{in} = [1 + \Gamma_1] / [1 - \Gamma_1]$

How to find Zin :

- 1) Normalize $z_L = Z_L / Z_O$
- 2) Plot z_L . This also gives you Γ_L .
- 3) Rotate Γ distance l (given in wavelengths) TOWARDS the generator.
- 4) Read z_{in} and Γ_1
- 5) $Zin = z_{in} * Zo$

EXAMPLE (see transparencies)

Standing Wave Ratio:

To read SWR from the Smith Chart:

- 1) PLOT z_L
- 2) Draw a circle through it.
- 3) Read SWR from real axis to right (SWR ≥ 1)

EXAMPLE (See transparencies)

Voltage Minima and Maxima:

To read Voltage maxima off Smith Chart:

- 1) PLOT z_L
- 2) First Voltage maximum occurs on right side of real axis. First Voltage minimum occurs on left side of real axis.

EXAMPLE (See transparencies)