ECE 6130 Lecture 4: SMITH CHARTS

Text Section: 2.4

Portfolio Question:

1) Describe and Demonstrate how to use a Smith Chart to find impedance, Vmin, Vmax, SWR, reflection coefficient, etc.
See Chapter 2, Problems 7-12

Smith Chart Circles:

A Smith chart is a graphical representation of the complex reflection coefficient, Γ

Smith Chart for Reflection Coefficient and Load Impedance:
Reflection Coefficient and Load $\left(\mathrm{Z}_{\mathrm{L}}\right)$ are directly related:
$\Gamma=\left(\mathrm{Z}_{\mathrm{L}} / \mathrm{Zo}-1\right) /\left(\mathrm{Z}_{\mathrm{L}} / \mathrm{Zo}+1\right)=\left(\mathrm{Z}_{\mathrm{L}}-1\right) /\left(\mathrm{Z}_{\mathrm{L}}+1\right)$
OR
$\mathrm{Z}_{\mathrm{L}} / \mathrm{Zo}=\mathrm{Z}_{\mathrm{L}}=(1+\Gamma) /(1-\Gamma) \leftarrow$ This is NORMALIZED load impedance $\mathrm{z}_{\mathrm{L}}=\mathrm{r}_{\mathrm{L}}+\mathrm{j} \mathrm{x}_{\mathrm{L}}$

The real and imaginary parts of z_{L} are functions of Γ, and these functions can be plotted on the same chart. Remember $|\Gamma| \leq 1$.

Example: Given Z_{L}, find Γ using Smith Chart
See transparencies (Copies to be made available in copy room) How to find Γ :

1) Find Normalized load Impedance, $z_{L}=Z_{L} / Z o=r_{L}+j x_{L}$
2) Find intercept of semicircles for r_{L} and x_{L} and PLOT z_{L}
3) Draw line from center of smith chart to (or through) z_{L}
4) Read angle of Γ from outside of Smith chart
5) Measure $|\Gamma|$ with a protractor and compare to line on bottom of smith chart labeled "Ref. Coeff. E or I"

Zo = 100 ohms
$\mathrm{Z}_{\mathrm{L}}=$ open circuit

1) $\mathrm{Z}_{\mathrm{L}}=\infty=\infty+\mathrm{j} 0$
2) PLOT (far right)
3) Draw Line through z_{L}. Read $\angle 0$
4) Measure using a protractor (or this one is obviously $=1$) $|\Gamma|=1$ $\Gamma=1 \angle 0$ (which is what we expect for an open circuit)
$\mathrm{Z}_{\mathrm{L}}=$ open circuit
5) $\mathrm{z}_{\mathrm{L}}=0=0+\mathrm{j} 0$
6) PLOT (far left)
7) Draw Line through z_{L}. Read $\angle 180^{\circ}$
8) Measure using a protractor (or this one is obviously =1) $|\Gamma|=1$
$\Gamma=1 \angle 180^{\circ}=-1$ (which is what we expect for an short circuit)
$\mathrm{Z}_{\mathrm{L}}=100+\mathrm{j} 0$ ohms
9) $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{L}} / \mathrm{Zo}=1+\mathrm{j} 0$
10) PLOT (center of smith chart)
11) Draw Line through z_{L}. Not so easy $\ldots \angle$?
12) Measure using a protractor (or this one is obviously $=0$) $|\Gamma|=0$ $\Gamma=0 \angle$? (which is what we expect for a matched load)
$\mathrm{Z}_{\mathrm{L}}=100+\mathrm{j} 100$ ohms
13) $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{L}} / \mathrm{Zo}=1+\mathrm{j} 1$
14) PLOT (top right quadrant)
15) Draw Line through z_{L}. about $\angle 63^{\circ}$
16) Measure using a protractor $|\Gamma|=0.45$
$\Gamma=0.45 \angle 63^{\circ}$
$\Gamma=\left(\mathrm{z}_{\mathrm{L}}-1\right) /\left(\mathrm{z}_{\mathrm{L}}+1\right)=(0+\mathrm{j} 1) /(2+\mathrm{j} 1)=1 \angle 90^{\circ} / 2.236 \angle 26.56^{\circ}=0.45 \angle 63.43^{\circ}$
How do you find load impedance if given Γ ?
17) Plot Γ
18) Read $z_{L}=Z_{L}+j z_{L}$
19) Unnormalize: $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{L}}$ * Zo

Admittance vs. Impedance:
Admittance $\mathrm{y}_{\mathrm{L}}=1 / \mathrm{z}_{\mathrm{L}}$

$$
\Gamma=\left(\mathrm{z}_{\mathrm{L}}-1\right) /\left(\mathrm{z}_{\mathrm{L}}+1\right)=\left(1 / \mathrm{y}_{\mathrm{L}}-1\right) /\left(1 / \mathrm{y}_{\mathrm{L}}+1\right)=-\left(\mathrm{y}_{\mathrm{L}}-1\right) /\left(\mathrm{y}_{\mathrm{L}}+1\right)=180 \text { out of phase }
$$

Steps to find Γ from y_{L} :

1) Find normalized $y_{L}=Z o / Z_{L}=g_{L}+j b_{L}$
2) Plot it (Using same curves $g=r$ and $b=x$)
3) "Transform it through the origin" ... Rotate 180 degrees = draw a line of equal length through the origin. Now you have found z_{L}
4) Read Γ as before

EXAMPLE (See transparencies)

Input Impedance:

$Z_{\text {in }}=Z_{o}\left[1+\Gamma \mathrm{e}^{-\mathrm{j} \beta \mathrm{l}}\right] /\left[1-\Gamma \mathrm{e}^{-\mathrm{j} \beta \mathrm{l}}\right]$
$Z_{\text {in }}=Z_{\text {in }} / Z_{o}=\left[1+\Gamma e^{-j 2 \beta l}\right] /\left[1-\Gamma e^{-j 2 \beta l}\right]$

Define reflection coefficient at the input (NOT Γ g) as the reflection coefficient looking into the load frm the input location. $\Gamma_{1}=\Gamma_{\mathrm{L}} \angle-2 \beta 1$
This represents moving $2 \beta 1$ radians towards the generator.
You can convert this distance to degrees, and read it off the outer circles on the Smith Chart (notice DIRECTION to the generator is marked)
OR $2 \beta \mathrm{l}=2(2 \pi / \lambda) \mathrm{l}=4 \pi(\mathrm{l} / \lambda)$ This has been normalized for you on the outside circle around the Smith Chart. Observe that if $\mathrm{l}=\lambda$, this represents 2 complete rotations around the Smith Chart. $\mathrm{L}=\lambda / 2$ represents one complete rotation.
Does this make sense? For a Transmission line of length $L=\lambda / 2$, traveling from generator to the load and back would represent a phase shift of 360 degrees ... one complete rotation.

Then $\mathrm{z}_{\mathrm{in}}=\left[1+\Gamma_{\mathrm{l}}\right] /\left[1-\Gamma_{1}\right]$
How to find Zin :

1) Normalize $Z_{L}=Z_{L} / Z o$
2) Plot z_{L}. This also gives you Γ_{L}.
3) Rotate Γ distance l (given in wavelengths) TOWARDS the generator.
4) Read $z_{\text {in }}$ and Γ_{1}
5) $\mathrm{Zin}=\mathrm{Z}_{\mathrm{in}} * \mathrm{Zo}$

EXAMPLE (see transparencies)

Standing Wave Ratio:

To read SWR from the Smith Chart:

1) PLOT z_{L}
2) Draw a circle through it.
3) Read SWR from real axis to right ($\mathrm{SWR} \geq 1$)

EXAMPLE (See transparencies)

Voltage Minima and Maxima:

To read Voltage maxima off Smith Chart:
PLOT z_{L}
2) First Voltage maximum occurs on right side of real axis. First Voltage minimum occurs on left side of real axis.

EXAMPLE (See transparencies)

