ECE 6130 LECTURE 5

Text Section: 2.5,6

Portfolio: For a terminated lossless transmission line:

1) Describe how to find the voltage at any point on the line as a function of time
2) Describe how to find the voltage along the line at any point in time.

TRANSIENTS ON TRANSMISSION LINES

Note definition of z axis is different from previous work.

Equivalent circuit at initial time ($\mathrm{t}=0$)
The switch is closed, no voltage has moved down the transmission line.
All the generator "sees" is $\mathrm{Zo} \ldots \mathrm{Z}_{\mathrm{L}}$ is too far away.
$\mathrm{I}_{1}{ }^{+}=\mathrm{Vg} /(\operatorname{Rg}+\mathrm{Zo}) \leftarrow+$ means positive-traveling wave, " 1 " means first wave $\mathrm{V}_{1}{ }^{+}=\mathrm{I}_{1}{ }^{+} \mathrm{Zo}=\mathrm{Vg} \mathrm{Zo} /(\mathrm{Rg}+\mathrm{Zo})$

Velocity of wave $\mathrm{vp}=1 / \operatorname{sqrt}(\varepsilon \mu)$
Wave moves down TL with no reflections until it reaches the load ...
Time to reach load: $\mathrm{T}=\mathrm{L} / \mathrm{vp}$

Wave reflects off load and starts back.
$\mathrm{V}_{1}{ }^{-}=\Gamma_{\mathrm{L}} \mathrm{V}_{1}{ }^{+}$
$\Gamma_{\mathrm{L}}=\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Zo}\right) /\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Zo}\right)$
(For $\mathrm{Z}_{\mathrm{L}}=2 \mathrm{Zo}, \Gamma_{\mathrm{L}}=1 / 3 \leftarrow$ This is real \ldots what happens if it is complex? Get phase change as well as reflection.)

Wave V_{1}^{-}now reflects off generator.
New +-traveling wave is produced:
$\mathrm{V}_{2}{ }^{+}==\Gamma_{\mathrm{g}} \mathrm{V}_{1}{ }^{-}$
$\Gamma_{\mathrm{g}}=\left(\mathrm{Z}_{\mathrm{g}}-\mathrm{Zo}\right) /\left(\mathrm{Z}_{\mathrm{g}}+\mathrm{Zo}\right)$
Notice that reflections are getting progressively smaller.

Waves keep reflecting until STEADY STATE is reached:
(additional reflections are negligibly small)
$\mathrm{V} \infty=\mathrm{Vg} \mathrm{Z}_{\mathrm{L}} /\left(\mathrm{Rg}+\mathrm{Z}_{\mathrm{L}}\right) \leftarrow$ Voltage on line at steady state.
This is the SAME as we would have observed in the DC case!
$\mathrm{I} \infty=\mathrm{V} \infty / \mathrm{Z}_{\mathrm{L}}=\mathrm{Vg} /\left(\mathrm{Rg}+\mathrm{Z}_{\mathrm{L}}\right)$

BOUNCE DIAGRAMS

t
Axes: Time and distance

$\mathrm{V}_{1}{ }^{-}=\Gamma_{\mathrm{L}} \mathrm{V}_{1}{ }^{+}$
$\mathrm{V}_{2}{ }^{+}=\Gamma \mathrm{g} \mathrm{V}_{1}{ }^{-}=\Gamma \mathrm{g} \Gamma_{\mathrm{L}} \mathrm{V}_{1}{ }^{+}$
$\mathrm{V}_{2}{ }^{-}=\Gamma_{\mathrm{L}} \mathrm{V}_{2}{ }^{+}=\Gamma \mathrm{g} \Gamma_{\mathrm{L}}{ }^{2} \mathrm{~V}_{1}{ }^{+}$
How to find $\mathrm{V}(\mathrm{z}, \mathrm{t})$ for any z and t :

1. Find the point (z, t) on the bounce diagram (eg. $\mathrm{Z}=\mathrm{L} / 2, \mathrm{t}=3 \mathrm{~T}$)
2. Draw a line back to $\mathrm{T}=0$
3. Add up all of the V traces you cross

$$
\mathrm{V}(\mathrm{~L} / 2,3 \mathrm{~T})=\mathrm{V}_{1}^{+}+\mathrm{V}_{1}^{-}+\mathrm{V}_{2}^{+}
$$

Example : Handout

