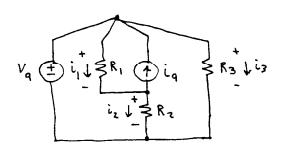

Review Page 56 of notes - Solution

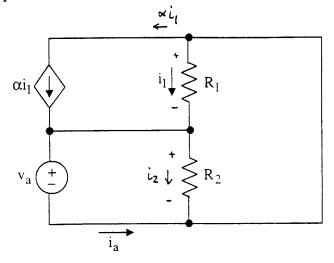
1. a. (5 points)

Calculate v_1 .

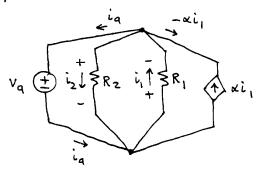

2. (30 points)

Derive an expression for i_1 . The expression must not contain more than the circuit parameters v_a , i_a , R_1 , R_2 , and R_3 .

sol'n:

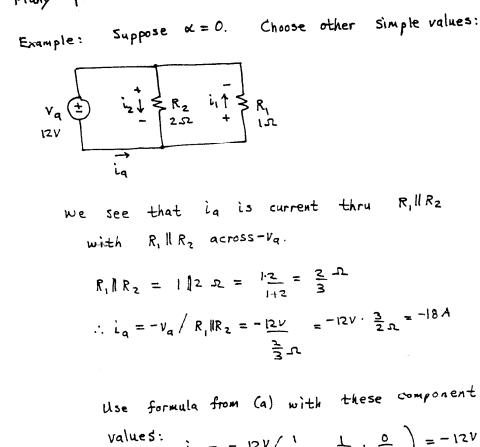

Redraw with top as one node:

Current sum at top or bottom node? No, because we would have to define a current for source V_q . Current at center node: $i_q - i_1 + i_2 = 0A$ V-loop around left inner loop: $V_q - i_1R_1 - i_2R_2 = 0V$ No V-loop for other inner loops because we would have to define V-drop for i_q . Next larger loop is $R_1, R_2, R_3: i_2R_2 + i_1R_1 - i_3R_3 = 0V$ New we have 3 perior is 2 is here and no wort to


Now we have 3 egns in 3 unknowns, and we want to find i_1 . We observe, however, that the first two egns have only two unknowns. So we don't actually need the 3rd egn. Use 1^{st} eg'n to find $i_2 = i_1 - i_q$. Substitute into 2^{nd} eg'n: $v_q - i_1 R_1 - (i_1 - i_q) R_2 = 0V$ or $i_1(-R_1 - R_2) = -v_q - i_q R_2$ or $i_1 = \frac{v_q + i_q R_2}{R_1 + R_2}$

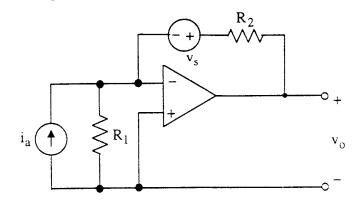
- 3. (30 points)
 - a. Derive an expression for i_a . The expression must not contain more than the circuit parameters α , v_a , R_1 , and R_2 .

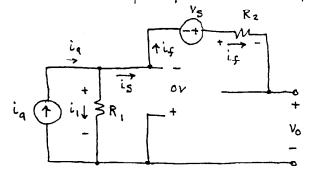
b. Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.


soln: a) Redraw circuit

No current sums at nodes because of Va.

No current for V_{a} is V_{a} is $R_{z} = 0V$ V = 100p on left: $V_{a} - izR_{z} = 0V$ V = 100p in middle: $izR_{z} + i_{1}R_{1} = 0V$ $i_{1} = -V_{a}$ R_{1} V_{a} R_{2}


we could also just observe that V_a is across R_i and R_2 . Now that we have found i_1 and i_2 , we use a current at top node to find i_a : $i_a + i_2 - i_1 - \alpha i_1 = OA$ or $i_a + \frac{V_a}{R_1} + \frac{v_a}{R_1} = \frac{V_a}{R_1}$ or $i_a = -\frac{V_a}{R_2} \left(\frac{1}{R_2} + \frac{1}{R_1} + \frac{\alpha}{R_1}\right)$ or $i_a = -\frac{V_a}{R_1 \|R_1\| \|R_2}$


values:
$$i_{q} = -\frac{12\nu}{2\Omega} \left(\frac{1}{2\Omega} + \frac{1}{1\Omega} + \frac{0}{1\Omega} \right) = -\frac{12\nu \cdot 3}{2}$$

ia = -181 V agrees with obvious solin for this simple case 4. (30 points)

The op-amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for v_0 in terms of not more than v_s , i_a , R_1 , and R_2 .

sol'n: Redraw without op-amp and OV drop across + and - inputs: <u>Ys</u> Ro

V-loop on left thru R_1 and OV drop: $\dot{L}_1 R_1 + OV = OV$ or $\dot{L}_1 = O$

Current sum at node above R1:

V-loop on right thru ov drop, Vs, R_2 , and V_0 : $-0V + Vs - is R_2 - V_0 = 0V$ or $is = \frac{Vs - V_0}{R_2}$ Now use is = is. Thus, $v_0 = 0$

$$i_{a} = \frac{v_{s} - v_{o}}{R_{z}} \quad \text{or} \quad v_{o} = v_{s} - i_{a}R_{z}$$