1. a) Solve the following simultaneous equations for v_{1} and v_{2} :

$$
\begin{aligned}
& 6 v_{1}-v_{2}=39 \\
& \frac{5\left(v_{2}-v_{1}\right)}{9}+\frac{v_{2}}{3}=-6
\end{aligned}
$$

b) Solve the following simultaneous equations for R_{1} and R_{2} :

$$
\begin{aligned}
& \sqrt{R_{1}+R_{2}^{2}}=5 R_{2} \\
& \frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{24}{25}
\end{aligned}
$$

2. Complete the following table showing products of prefixes for engineering units:

.	M	k		m	μ	n
M	T			k		
k						
					μ	n
m			m			
μ						f
n	m			p		

Note: $T=1012, G=10^{9}, \mathrm{M}=10^{6}, \mathrm{k}=10^{3}$, blank $=10^{0}$,
$\mathrm{m}=10^{-3}, \mu=10^{-6}, \mathrm{n}=10^{-9}, \mathrm{p}=10^{-12}, \mathrm{f}=10^{-15}, \mathrm{a}=10^{-18}$
3. This problem addresses the power and energy consumed by a circuit component.
a) Compute the power as a function of time consumed by a resistor with the following current and voltage waveforms versus time:

$$
\begin{aligned}
& i(t)=2+3 \cos \left(2 \pi t-45^{\circ}\right) \mathrm{A} \\
& v(t)=4+6 \cos \left(2 \pi t+45^{\circ}\right) \mathrm{V}
\end{aligned}
$$

b) Find the energy consumed by the component described in (a) in the first second. Note: Convert the 45° to radians before integrating.
4. Perform the following calculations, and write the answers with appropriate prefixes (such as $\mu, \mathrm{m}, \mathrm{k}$, etc.) for engineering units:
a) $\quad p=2.3 \mu \mathrm{~A} \cdot 110 \mathrm{kV}$

Note: $\mathrm{V} \cdot \mathrm{A}=\mathrm{W}$
b) $\quad R=1.3 \mathrm{M} \Omega+200 \mathrm{k} \Omega$
5.

Using the passive sign convention, complete the labeling of all currents and voltages for the resistors in the above circuit.

