1. Find the current, i_{L}, through the inductor in the circuit below for $t>0$ if $i_{\mathrm{L}}(t=0)=5 \mathrm{~A}$.

2. Find the voltage, v_{C}, across the capacitor in the circuit below for $t>0$ if $v_{\mathrm{C}}(t=0)=5 \mathrm{~V}$.

3. After being open for a long time, the switch closes at $t=0$.

a) Find an expression for $v_{\mathrm{C}}(t)$ for $t \geq 0$.
b) Find the energy stored in the capacitor at time $t=10 \mathrm{~ms}$.
4.

a) Find an expression for $i_{\mathrm{L}}(t)$ for $t \geq 0$. Note: Assume the initial current in the L is created by circuitry not shown in the diagram.
b) Find the energy stored in the inductor at time $t=10 \mathrm{~ms}$.
5. After being zero for a long time, the value of $v_{\mathrm{g}}(t)$ changes to 9 V at $t=0$ (and remains at 9 V as time increases to infinity).

a) Find an expression for $v_{0}(t)$ for $t>0$.
b) Find the current, i_{R}, in R as a function of time.

