

1. Find the current, $i_{\rm L}$, through the inductor in the circuit below for t > 0 if $i_{\rm L}(t=0) = 5$ A.

2. Find the voltage, $v_{\rm C}$, across the capacitor in the circuit below for t > 0 if $v_{\rm C}(t=0) = 5$ V.

3.

After being open for a long time, the switch closes at t = 0.

- a) Find an expression for $v_{\rm C}(t)$ for $t \ge 0$.
- b) Find the energy stored in the capacitor at time t = 10 ms.

- a) Find an expression for $i_L(t)$ for $t \ge 0$. Note: Assume the initial current in the *L* is created by circuitry not shown in the diagram.
- b) Find the energy stored in the inductor at time t = 10 ms.
- 5. After being zero for a long time, the value of $v_g(t)$ changes to 9 V at t = 0 (and remains at 9 V as time increases to infinity).

- a) Find an expression for $v_0(t)$ for t > 0.
- b) Find the current, i_R , in *R* as a function of time.