Ex: Find the current, i_{L}, through the inductor in the circuit below for $t>0$ if $i_{\mathrm{L}}(t=0)=5 \mathrm{~A}$.

Sol'n: The same current flows in both the L and R , and the voltages are the same except for a minus sign:

$$
v_{L}=L \frac{d i_{L}}{d t}=-i_{L} R=-v_{R}
$$

The inductor current, i_{L}, that solves this equation is an exponential:

$$
i_{L}(t)=k e^{-t /(L / R)}=k e^{-t / 2.5 \mu \mathrm{~s}}
$$

To satisfy the initial condition as given for $t=0$, the value of the constant k must be 5 A , since the exponential has a value of unity: $e^{0}=1$.

$$
i_{L}(t>0)=5 \mathrm{~A} e^{-t / 2.5 \mu \mathrm{~s}}
$$

Note: We could actually use this solution for $t=0$ as well, since i_{L} doesn't change instantly at time zero.

