Ex: Find the voltage, v_C , across the capacitor in the circuit below for t > 0 if $v_C(t=0) = 5$ V.

SoL'N: The same current flows in both the C and R, and the voltages are the same except for a minus sign:

$$i_C = C \frac{dv_C}{dt} = \frac{-v_C}{R} = i_R$$

SOL'N: The form of solution is an exponential.

$$v_C(t) = ke^{-t/RC}$$

The value of the constant, k, is chosen to match the initial voltage on C, since the exponential has a value of unity at t = 0: $e^0 = 1$.

$$v_C(t) = 5 \text{ V} \cdot e^{-t/10 \text{ } \mu\text{s}}$$