Ex: Find the voltage, v_{C}, across the capacitor in the circuit below for $t>0$ if $v_{\mathrm{C}}(t=0)=5 \mathrm{~V}$.

Sol'n: The same current flows in both the C and R, and the voltages are the same except for a minus sign:

$$
i_{C}=C \frac{d v_{C}}{d t}=\frac{-v_{C}}{R}=i_{R}
$$

SoL'n: The form of solution is an exponential.

$$
v_{C}(t)=k e^{-t / R C}
$$

The value of the constant, k, is chosen to match the initial voltage on C, since the exponential has a value of unity at $t=0: e^{0}=1$.

$$
v_{C}(t)=5 \mathrm{~V} \cdot e^{-t / 10 \mu \mathrm{~s}}
$$

