Ex:

After being closed for a long time, the switch opens at $t=0$. Find $i_{L}(t)$ for $t>0$.
sol' n : Use the general form of solution for
RL problems:
$i_{L}(t>0)=i_{L}(t \rightarrow \infty)+\left[i_{L}\left(t=0^{+}\right)-i_{L}(t \rightarrow \infty)\right] e^{-t / \frac{L}{R_{T h}}}$
To find $i_{L}\left(0^{+}\right)$, we consider $t=0^{-}$.
At $t=0^{-}$, the circuit has reached stable values, and all time derivatives of i and v are zero. Thus, $v_{L}=L \frac{d i_{L}}{d t}=L \cdot 0=0$ and L acts like a wire.

Since the switch is closed at $t=0^{-}$, we have a current source shorted by a wire.

We are only interested in the energy variable, $i_{L}\left(0^{-}\right)$. All other currents and voltages may change instantly when the switch opens.
$t=0^{-}$: $L=$ wire, switch closed, find $i_{L}\left(0^{-}\right)$

$i_{L}\left(O^{-}\right)=600 \mu A$ since all the current will flow thru the $L=$ wire
$i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)$since energy variables like i_{L} and v_{C} cannot change instantly
$t=0^{+}: L=$ current source, $i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)$, switch open (left side of circuit disconnected)

$$
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=600 \mu \mathrm{~A}
$$

Now we find $i_{L}(t \rightarrow \infty)$. As $t \rightarrow \infty$, the circuit again reaches stable values, and the L again acts like a wire.
$t \rightarrow \infty$:

$$
100 \mathrm{k} \Omega\}
$$

$i_{L}(t \rightarrow \infty)=0$ since there is no power source.

The last quantity we need is $R_{T h}$, the Thevenin equivalent resistance of the circuit as seen from the terminals where the L is connected. In other words, we remove the L and find the Thevenin equivalent of the remaining circuit.

Since $t>0$, the switch is open.

The circuit is already in Thevenin equivalent form with $V_{T h}=O V$ and $R_{T h}=100 \mathrm{~K} \Omega$.

Thus, the time constant of the circuit is

$$
\frac{L}{R_{T h}}=\frac{3.3 \mathrm{mH}}{100 \mathrm{k} \Omega}=\frac{33 \mathrm{mH}}{1 \mathrm{M} \Omega}=33 \mathrm{~ns}
$$

Substituting values into the general form of solution, we have our desired answer:

$$
i_{L}(t>0)=O A+(600 \mu A-O A) e^{-t / 33 n s}
$$

or

$$
i_{L}(t>0)=600 \mu A \cdot e^{-t / 33 n s}
$$

