Ex:

After being open for a long time, the switch closes at $t=0$.
a) Find $v_{\mathrm{C}}\left(0^{-}\right)$for the above circuit.
b) For $t>0$, find the Thevenin equivalent of the above circuit as seen from the terminals where the capacitor is attached.
c) For the above circuit, find find $v_{1}(t)$ for $t>0$.

NOTE: The original problem shows the current in the capacitor as $99 i_{\mathrm{b}}$. The dependent source in the problem was intended to represent a bipolar transistor, in which case i_{b} is the base current that is approximately $1 / 100$ times the collector current shown in the problem as $99 i_{\mathrm{b}}$. The solution below assumes the base (and capacitor) current is i_{b}. The method of solution using the capacitor current as $99 i_{\mathrm{b}}$ is the same, but R_{Th} changes, and the answers obtained are as follows:
a) 0 V (same as below)
b) $\quad R_{\mathrm{TH}}=240 \Omega(2 \cdot 120 \Omega$ instead of $100 \cdot 120 \Omega)$
c) $v_{1}(t>0)=12 e^{-t / 720 \mu \mathrm{~s}} \mathrm{~V}$
sol'n: Use general form of solution for RC problems:

$$
v_{1}(t>0)=v_{1}(t \rightarrow \infty)+\left[v_{1}\left(0^{+}\right)-v_{1}(t \rightarrow \infty)\right] e^{-t / R_{T h} C}
$$

$t=0^{-}$: C acts like open circuit $\Rightarrow i_{b}=0,99 i_{b}=0$ switch is open

Since no power is connected to $C, V_{C}\left(0^{-}\right)=O V$
$t=0^{+}: C$ acts Like v sra, $V_{C}\left(0^{+}\right)=v_{C}\left(0^{-}\right)$. switch is closed

If we consider a v-loop around the outside of the bottom half of the circuit, we find that we have 12 V across the 120Ω resistor:

$$
v_{1}\left(0^{+}\right)=12 \mathrm{~V}
$$

$t \rightarrow \infty: \quad C$ acts like open circuit $\Rightarrow i_{b}=0,99 i_{b}=0$ switch is closed

No power is connected to 120Ω. Thus, $v_{1}(t \rightarrow \infty)=O V$
$R_{T h}:$

$$
R_{T h}=\frac{V_{T h}}{i_{s C}} \quad V_{T h}=v_{a, b} \text { with } C \text { removed } \begin{aligned}
& \text { (a,b open circuit) }
\end{aligned}
$$

With open circuit a, b we have $i_{b}=0$ and $99 i_{b}=0$. Thus, $v_{1}=0 \mathrm{~V}$.

$$
V_{T h}=12 V-V_{1}=12 V-O V=12 V
$$

Now connect wire from a to b and measure current, iss.

We have $v_{1}=12 \mathrm{~V}$ since it is now connected across 12 V source by wires.

The current thru the 120Ω resistor is $100 i_{b}$:

$$
\frac{v_{1}}{120 \Omega}=\frac{12 \mathrm{~V}}{120 \Omega}=100 \mathrm{~mA}=100 \mathrm{i}_{\mathrm{b}}
$$

Thus, $i_{S C}=i_{b}=\frac{100 \mathrm{~mA}}{100}=1 \mathrm{~mA}$

$$
R_{T h}=\frac{V_{T h}}{i_{5 C}}=\frac{12 \mathrm{~V}}{1 \mathrm{~mA}}=12 \mathrm{k} \Omega
$$

Note: We get the same result if we remove the dependent source and multiply the 120Ω resistor by 100 to account for the $100 i_{b}$ flowing thru it.

This is the concept of impedance multiplication.

We find $R_{T h}$ by turning off the 12 V source (which becomes a wire) and determining R seen looking into a, b.

We have $R_{T h}=12 k \Omega$, as before.

Plugging values into the general solution yields our final answer:

$$
V_{1}(t)=o V+[12 V-O V] e^{-t / 12 k \Omega \cdot 3 \mu F}, \quad t>0
$$

or

$$
v_{1}(t>0)=12 v e^{-t / 36 m s}
$$

