

1.

After being closed for a long time, the switch opens at t = 0.

Calculate the energy stored on the inductor as $t \rightarrow \infty$.

2. For the circuit in problem 1, write a numerical expression for i(t) for t > 0.

3.

After being open for a long time, the switch closes at t = 0, and $v_C(t = 0^-) = 4$ V. Write an expression for $v_C(t > 0)$ in terms of $R_1, R_2, R_3, v_8, v_C(t = 0^-)$, and C.

- a) Calculate the value of $R_{\rm L}$ that would absorb maximum power.
- b) Calculate that value of maximum power $R_{\rm L}$ could absorb.

Using superposition, derive an expression for *i* that contains no circuit quantities other than i_s , v_s , R_1 , R_2 , R_3 , and α .