1.

After being closed for a long time, the switch opens at $t=0$.
Calculate the energy stored on the inductor as $t \rightarrow \infty$.
2. For the circuit in problem 1, write a numerical expression for $i(t)$ for $t>0$.
3.

After being open for a long time, the switch closes at $t=0$, and $v_{\mathrm{C}}\left(t=0^{-}\right)=4 \mathrm{~V}$.
Write an expression for $v_{\mathrm{C}}(t>0)$ in terms of $R_{1}, R_{2}, R_{3}, v_{\mathrm{s}}, v_{\mathrm{C}}\left(t=0^{-}\right)$, and C.
4.

a) Calculate the value of R_{L} that would absorb maximum power.
b) Calculate that value of maximum power R_{L} could absorb.
5.

Using superposition, derive an expression for i that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{s}}, R_{1}, R_{2}, R_{3}$, and α.

