Ex:

After being closed for a long time, the switch opens at $t=0$.
a) Calculate the energy stored on the inductor as $t \rightarrow \infty$.
b) Write a numerical expression for $i(t)$ for $t>0$.

Sol'n: a) As t approaches infinity, the switch is open and the inductor acts like a wire. The $3 \mathrm{k} \Omega$ and $15 \mathrm{k} \Omega$ sum to act like an $18 \mathrm{k} \Omega$ resistor. This $18 \mathrm{k} \Omega$ resistor is in parallel with the $2 \mathrm{k} \Omega$ resistor, forming a current divider. The current in the inductor is the same as the current in the $3 \mathrm{k} \Omega$ and $15 \mathrm{k} \Omega$ resistors:

$$
i_{L}(t \rightarrow \infty)=300 \mu \mathrm{~A} \frac{2 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+18 \mathrm{k} \Omega}=30 \mu \mathrm{~A}
$$

The energy for an inductor is the current squared times half the inductance:

$$
w_{L}(t \rightarrow \infty)=\frac{1}{2} L i_{L}^{2}(t \rightarrow \infty)
$$

Using the final current we have the energy:

$$
w_{L}(t \rightarrow \infty)=\frac{1}{2} 20 \mathrm{mH}(30 \mu \mathrm{~A})^{2}=9 \mathrm{pJ}
$$

b) We use the general form of solution for $R L$ circuits:

$$
i(t>0)=i(t \rightarrow \infty)+\left[\left(i\left(0^{+}\right)-i(t \rightarrow \infty)\right] e^{-t /\left(L / R_{\mathrm{Th}}\right)}\right.
$$

We find the initial condition for i by determining the inductor current at $t=0^{+}$. With the switch closed for a long time, the $15 \mathrm{k} \Omega$ resistor on the right side is bypassed, and the inductor looks like a wire. The circuit becomes a current divider, with the $2 \mathrm{k} \Omega$ and $3 \mathrm{k} \Omega$ resistors in parallel. The current flowing through L is the same as the current flowing through the $3 \mathrm{k} \Omega$ resistor:

$$
i_{L}\left(t=0^{-}\right)=300 \mu \mathrm{~A} \frac{2 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+3 \mathrm{k} \Omega}=120 \mu \mathrm{~A}
$$

Because the energy stored by the inductor cannot change instantly, the value of i_{L} at time $t=0^{+}$is the same as at time $t=0^{-}$:

$$
i_{L}\left(t=0^{+}\right)=i_{L}\left(t=0^{-}\right)=120 \mu \mathrm{~A}
$$

Since the $15 \mathrm{k} \Omega$ resistor is in series with the inductor, it carries the same current as the inductor:

$$
i\left(0^{+}\right)=i_{L}\left(t=0^{+}\right)=120 \mu \mathrm{~A}
$$

Finally, we find the value of R_{Th} for time $t>0$. We remove the L and look into the terminals to find R_{Th}. Here, we may simply turn off the current source, leaving a resistance of $3 \mathrm{k} \Omega+2 \mathrm{k} \Omega+15 \mathrm{k} \Omega$:

$$
R_{\mathrm{Th}}=20 \mathrm{k} \Omega
$$

Our time constant is L / R_{Th} :

$$
\tau=\frac{L}{R_{\mathrm{Th}}}=\frac{20 \mathrm{mH}}{20 \mathrm{k} \Omega}=1 \mu \mathrm{~s}
$$

Substituting values yields our final answer:

$$
i(t>0)=30 \mu \mathrm{~A}+[120 \mu \mathrm{~A}-30 \mu \mathrm{~A}] e^{-t / 1 \mu \mathrm{~s}}
$$

or

$$
i(t>0)=30 \mu \mathrm{~A}+90 \mu \mathrm{~A} e^{-t / 1 \mu \mathrm{~s}}
$$

