Ex:

Using superposition, derive an expression for i that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{s}}, R_{1}, R_{2}, R_{3}$, and α.

Sol'n: We turn on the independent sources one at a time. First, we turn on v_{S} and turn off i_{s}, which then acts like an open circuit. That leaves R_{1} and R_{2} across v_{s}, forming a voltage divider.

$$
v_{\mathrm{x} 1}=v_{s} \frac{R_{1}}{R_{1}+R_{2}}
$$

The current we seek is the same as the current in the dependent source, which will be

$$
i_{1}=\alpha v_{\mathrm{x} 1}=v_{s} \frac{\alpha R_{1}}{R_{1}+R_{2}} .
$$

Second, we turn on i_{s} and turn off v_{s}, which then acts like a wire. Careful examination of the circuit reveals that R_{1} and R_{2} are now in parallel, and the voltage across them is given by Ohm's law:

$$
v_{\mathrm{x} 2}=i_{s} \cdot R_{1} \| R_{2}
$$

The current in the dependent source will be

$$
i_{2}=\alpha v_{\mathrm{x} 2}=i_{s} \alpha \cdot R_{1} \| R_{2}
$$

Summing the currents yields our final answer:

$$
i=i_{1}+i_{2}=v_{s} \frac{\alpha R_{1}}{R_{1}+R_{2}}+i_{s} \alpha \cdot R_{1} \| R_{2}
$$

