

- 1. Give numerical answers to each of the following questions:
 - a) Find the value of z = 3 + j4 + -4 + j3.
 - b) Find the magnitude of z = 8 j15.
 - c) Find the conjugate of $z = \frac{j4}{1-j}$.
 - d) Find the real part of $z = je^{j\pi/4}$.
 - e) Find the value of z = (-4 i3)(3 + i4).
- 2. Plot each of the following complex numbers as vectors in the complex plane:
 - a) 1 + j
 - b) $e^{j\pi/2}$
 - c) $-\frac{1-j}{2} \frac{1+j}{2}$
 - d) $\frac{1}{i^5}$
 - e) $\frac{-1+j}{1+j}$
- 3. Give numerical answers to each of the following questions:
 - a) Rationalize $\frac{25 j60}{-12 + j5}$. Express your answer in rectangular form.
 - b) Find the polar form of $\frac{\sqrt{3}}{2} j\frac{1}{2}$.
 - c) Find the rectangular form of $4\angle 5^{\circ} \cdot \sqrt{2} \angle 40^{\circ}$
 - d) Find the magnitude of $\left(\frac{j^j}{1+j}\right)\left(\frac{6e^{j3.14^\circ}}{1-j}\right)$.
 - e) Find the real part of $\frac{(1-j)^2}{\sqrt{2}+j\sqrt{2}}$.

4. Write phasors (as both $Ae^{j\phi}$ and $A\angle\phi$) for each of the following signals:

a)
$$v(t) = 6\cos(1kt + 45^{\circ}) \text{ V}$$

b)
$$i(t) = 6\sin(\omega t + 45^{\circ}) \text{ mA}$$

c)
$$i(t) = 5 \mu F \cdot \frac{d}{dt} 4 \cos(1Mt + 45^\circ) V$$

d)
$$v(t) = 3 \text{ pH} \cdot \frac{d}{dt} 2 \sin(10t - 30^{\circ}) \text{ mA}$$

e)
$$v(t) = \cos(10t + 60^\circ) \text{ V} + 3\sin(10t - 30^\circ) \text{ V}$$

5. Given $\omega = 1k$ rad/sec, write inverse phasors for each of the following signals:

a)
$$I = 12e^{j30^{\circ}} A$$

b)
$$\mathbf{V} = -j \mathbf{V}$$

c)
$$I = -7 A$$

d)
$$V = 4(\sqrt{3} + j)e^{j60^{\circ}} V$$

e)
$$I = e^{-\pi - j30^{\circ}} A$$