1. Give numerical answers to each of the following questions:
a) Find the value of $z=3+j 4+-4+j 3$.
b) Find the magnitude of $z=8-j 15$.
c) Find the conjugate of $z=\frac{j 4}{1-j}$.
d) Find the real part of $z=j e^{j \pi / 4}$.
e) Find the value of $z=(-4-j 3)(3+j 4)$.
2. Plot each of the following complex numbers as vectors in the complex plane:
a) $1+j$
b) $e^{j \pi / 2}$
c) $-\frac{1-j}{2}-\frac{1+j}{2}$
d) $\frac{1}{j^{5}}$
e) $\frac{-1+j}{1+j}$
3. Give numerical answers to each of the following questions:
a) Rationalize $\frac{25-j 60}{-12+j 5}$. Express your answer in rectangular form.
b) Find the polar form of $\frac{\sqrt{3}}{2}-j \frac{1}{2}$.
c) Find the rectangular form of $4 \angle 5^{\circ} \cdot \sqrt{2} \angle 40^{\circ}$
d) Find the magnitude of $\left(\frac{j^{j}}{1+j}\right)\left(\frac{6 e^{j 3.14^{\circ}}}{1-j}\right)$.
e) Find the real part of $\frac{(1-j)^{2}}{\sqrt{2}+j \sqrt{2}}$.
4. Write phasors (as both $\mathrm{A} e^{j \phi}$ and $\mathrm{A} \angle \phi$) for each of the following signals:
a) $\quad v(t)=6 \cos \left(1 \mathrm{k} t+45^{\circ}\right) \mathrm{V}$
b) $i(t)=6 \sin \left(\omega t+45^{\circ}\right) \mathrm{mA}$
c) $i(t)=5 \mu \mathrm{~F} \cdot \frac{d}{d t} 4 \cos \left(1 \mathrm{M} t+45^{\circ}\right) \mathrm{V}$
d) $v(t)=3 \mathrm{pH} \cdot \frac{d}{d t} 2 \sin \left(10 t-30^{\circ}\right) \mathrm{mA}$
e) $v(t)=\cos \left(10 t+60^{\circ}\right) \mathrm{V}+3 \sin \left(10 t-30^{\circ}\right) \mathrm{V}$
5. Given $\omega=1 \mathrm{krad} / \mathrm{sec}$, write inverse phasors for each of the following signals:
a) $\mathbf{I}=12 e^{j 30^{\circ}} \mathrm{A}$
b) $\quad \mathbf{V}=-j \mathrm{~V}$
c) $\quad \mathbf{I}=-7 \mathrm{~A}$
d) $\quad \mathbf{V}=4(\sqrt{3}+j) e^{j 60^{\circ}} \mathrm{V}$
e) $\mathbf{I}=e^{-\pi-j 30^{\circ}} \mathrm{A}$
