Ex: Give numerical answers to each of the following questions:
a) Find the value of $z=3+j 4+-4+j 3$.
b) Find the magnitude of $z=8-j 15$.
c) Find the conjugate of $z=\frac{j 4}{1-j}$.
d) Find the real part of $z=j e^{j \pi / 4}$.
e) Find the value of $z=(-4-j 3)(3+j 4)$.

Sol'n: a) Sum the real parts, and sum the imaginary parts.

$$
z=3+j 4+-4+j 3=3-4+j(4+3)=-1+j 7
$$

b) Think of the complex number as a vector. Use the Pythagorean theorem to find the magnitude (or length) of this vector.

$$
|z|=\sqrt{8^{2}+15^{2}}=\sqrt{289}=17
$$

c) We use an asterisk to designate a conjugate. To find the conjugate, we change each j to $-j$.

$$
z^{*}=\left(\frac{j 4}{1-j}\right)^{*}=\frac{-j 4}{1--j}=\frac{-j 4}{1+j}
$$

d) We use Euler's formula.

$$
\operatorname{Re}\left[z=e^{j \pi / 4}\right]=\operatorname{Re}[\cos (\pi / 4)+j \sin (\pi / 4)]=\cos (\pi / 4)=\frac{\sqrt{2}}{2}
$$

e) We use the distributive property to multiply the numbers.

$$
\begin{aligned}
& z=(-4-j 3)(3+j 4)=-4(3)-j^{2} 3(4)+-4(j 4)-j 3(3) \\
& z=-12+12-j 16-j 9=-j 25
\end{aligned}
$$

