Ex: Plot each of the following complex numbers as vectors in the complex plane:
a) $1+j$
b) $e^{j \pi / 2}$
c) $-\frac{1-j}{2}-\frac{1+j}{2}$
d) $\frac{1}{j^{5}}$
e) $\frac{-1+j}{1+j}$

Sol'n: a) We think of the complex numbers as vectors specified in either rectangular form, $a+j b$, or polar form, $A e^{j \phi}$.

b) We use Euler's formula.

$$
e^{j \pi / 2}=\cos (\pi / 2)+j \sin (\pi / 2)=0+j 1=j
$$

c)

$$
-\frac{1-j}{2}-\frac{1+j}{2}=-\frac{1}{2}+j \frac{1}{2}-\frac{1}{2}-j \frac{1}{2}=-1
$$

d) Note that $j^{4}=1$, and $1 / j=-j$.

$$
\frac{1}{j^{5}}=\frac{1}{j}=-j
$$

e) We can rationalize the value. We do this by multiplying the numerator and denominator by the conjugate of the denominator. $\frac{-1+j}{1+j}$

$$
\frac{-1+j}{1+j}=\frac{-1+j}{1+j} \cdot \frac{1-j}{1-j}=\frac{-1+j 2+1}{1^{2}+1^{2}}=\frac{j 2}{2}=j
$$

