Ex: \quad Given $\omega=1 \mathrm{krad} / \mathrm{sec}$, write inverse phasors for each of the following signals:
a) $\mathbf{I}=12 e^{j 30^{\circ}} \mathrm{A}$
b) $\quad \mathbf{V}=-j \mathrm{~V}$
c) $\quad \mathbf{I}=-7 \mathrm{~A}$
d) $\quad \mathbf{V}=4(\sqrt{3}+j) e^{j 60^{\circ}} \mathrm{V}$
e) $\mathbf{I}=e^{-\pi-j 30^{\circ}} \mathrm{A}$

SoL'n: a) The magnitude is the magnitude of $\cos (\omega t)$, and the angle in the exponent is the phase shift of the time-domain waveform.

$$
\mathrm{P}^{-1}\left[\mathbf{I}=12 e^{j 30^{\circ}} \mathrm{A}\right]=12 \cos \left(\omega t+30^{\circ}\right) \mathrm{A}
$$

b) One way to proceed is to first put the phasor in pure polar form.

$$
\mathrm{P}^{-1}[\mathbf{V}=-j \mathrm{~V}]=\mathrm{P}^{-1}\left[e^{-j 90^{\circ}} \mathrm{V}\right]=\cos \left(\omega t-90^{\circ}\right) \mathrm{V}
$$

Note: We could also say $\mathrm{P}^{-1}[-j \mathrm{~V}]=\sin (\omega t) \mathrm{V}$ since

$$
\cos \left(\omega t-90^{\circ}\right)=\sin (\omega t)
$$

c) A minus sign is equivalent to $\mathrm{a} \pm 180^{\circ}$ phase shift.

$$
\mathrm{P}^{-1}[\mathbf{I}=-7 \mathrm{~A}]=\mathrm{P}^{-1}\left[e^{j 180^{\circ}} 7 \mathrm{~A}\right]=\mathrm{P}^{-1}\left[7 e^{j 180^{\circ}} \mathrm{A}\right]=7 \cos \left(\omega t+180^{\circ}\right) \mathrm{A}
$$

d) We multiply terms after converting them to polar form.

$$
\mathrm{P}^{-1}\left[\mathbf{V}=4(\sqrt{3}+j) e^{j 60^{\circ}} \mathrm{V}\right]=\mathrm{P}^{-1}\left[4 \cdot 2 e^{j 30^{\circ}} e^{j 60^{\circ}} \mathrm{V}\right]=\mathrm{P}^{-1}\left[8 e^{j 90^{\circ}} \mathrm{V}\right]
$$

or

$$
\mathrm{P}^{-1}[\mathbf{V}]=\mathrm{P}^{-1}\left[8 e^{j 90^{\circ}} \mathrm{V}\right]=8 \cos \left(\omega t+90^{\circ}\right) \mathrm{V}
$$

Note: We could also say $\mathrm{P}^{-1}[\mathbf{V}]=-8 \sin (\omega t) \mathrm{V}$ since $\cos \left(\omega t+90^{\circ}\right)=-\sin (\omega t)$
e) The real exponent yields the magnitude.

$$
\mathrm{P}^{-1}\left[\mathbf{I}=e^{-\pi-j 30^{\circ}} \mathrm{A}=e^{-\pi} \angle-30^{\circ} \mathrm{A}\right]=e^{-\pi} \cos \left(\omega t-30^{\circ}\right) \mathrm{A}
$$

