HOMEWORK #14

1. Draw the frequency-domain circuit diagram (with numerical values for impedances and phasors [except the dependent source which will be labeled $2V_x$]) for the following circuit:

- 2. Given $\omega = 400$ rad/s, for each of the following impedances, determine which of the following the impedance is from: a capacitor, an inductor, or a resistor. Also, find the value of that capacitor, inductor, or resistor.
 - a) $1 \text{ k}\Omega$
 - b) $-j50 \Omega$
 - c) $j400 \Omega$
 - d) $-j2 k\Omega$
 - e) $j8 k\Omega$
- 3. Derive a symbolic expression for the impedance of an R in series with an L and C in parallel at frequency ω . Express the answer as a ratio of polynomials with complex coefficients.

4. Find the total impedance of the circuitry shown below if $\omega = 50$ k rad/s.

5.

a) Find time-domain expressions for the waveforms of the voltages across the R and L in the above circuit.

b) Find time-domain expressions for the waveforms of the currents through the R and C in the above circuit.