1. Draw the frequency-domain circuit diagram (with numerical values for impedances and phasors [except the dependent source which will be labeled $\left.2 \mathbf{V}_{\mathrm{x}}\right]$) for the following circuit:

2. Given $\omega=400 \mathrm{rad} / \mathrm{s}$, for each of the following impedances, determine which of the following the impedance is from: a capacitor, an inductor, or a resistor. Also, find the value of that capacitor, inductor, or resistor.
a) $1 \mathrm{k} \Omega$
b) $\quad-j 50 \Omega$
c) $j 400 \Omega$
d) $-j 2 \mathrm{k} \Omega$
e) $j 8 \mathrm{k} \Omega$
3. Derive a symbolic expression for the impedance of an R in series with an L and C in parallel at frequency ω. Express the answer as a ratio of polynomials with complex coefficients.
4. Find the total impedance of the circuitry shown below if $\omega=50 \mathrm{k} \mathrm{rad} / \mathrm{s}$.

5.

a) Find time-domain expressions for the waveforms of the voltages across the R and L in the above circuit.

b) Find time-domain expressions for the waveforms of the currents through the R and C in the above circuit.

