Ex: \quad Given $\omega=400 \mathrm{rad} / \mathrm{s}$, for each of the following impedances, determine which of the following the impedance is from: a capacitor, an inductor, or a resistor. Also, find the value of that capacitor, inductor, or resistor.
a) $1 \mathrm{k} \Omega$
b) $-j 50 \Omega$
c) $j 400 \Omega$
d) $-j 2 \mathrm{k} \Omega$
e) $\quad j 8 \mathrm{k} \Omega$

SoL'n: a) A real value of impedance originates from a resistance, and the value of the impedance in the frequency-domain is the same as the resistance in the time-domain.

$$
R=1 \mathrm{k} \Omega
$$

b) A purely imaginary and negative value of impedance originates from a capacitance, and the value of the impedance in the frequency-domain is inversely proportional to the capacitance in the time-domain.

$$
z_{C}=\frac{1}{j \omega C}
$$

or

$$
-j 50 \Omega=\frac{1}{j 400 \mathrm{r} / \mathrm{s} \cdot C}
$$

or

$$
C=\frac{1}{j 400 \mathrm{r} / \mathrm{s} \cdot-j 50 \Omega}=\frac{1}{20 \mathrm{k}} \mathrm{~F}=50 \mu \mathrm{~F}
$$

c) A purely imaginary and positive value of impedance originates from an inductor, and the value of the impedance in the frequency-domain is proportional to the inductor in the time-domain.

$$
z_{L}=j \omega L
$$

or

$$
j 400 \Omega=j \omega L
$$

or

$$
L=\frac{j 400 \Omega}{j 400 \mathrm{r} / \mathrm{s}}=1 \mathrm{H}
$$

d) This impedance is 25 times smaller than that in part (b). This requires a capacitance that is 25 times bigger.

$$
C=1.25 \mathrm{mF}
$$

e) This impedance is 20 times larger than that in part (b). This requires an inductance that is 20 times larger.

$$
L=20 \mathrm{H}
$$

