Ex: \quad Derive a symbolic expression for the impedance of an R in series with an L and C in parallel at frequency ω. Express the answer as a ratio of polynomials with complex coefficients.

Sol'n: The circuit is shown below.

When working with parallel impedances, it is typically easier to use the summation of conductance form of parallel impedance.

$$
z_{\|}=\frac{1}{\frac{1}{j \omega L}+\frac{1}{\frac{1}{j \omega C}}}=\frac{1}{\frac{1}{j \omega L}+j \omega C}=\frac{1}{-j\left(\frac{1}{\omega L}-\omega C\right)}=j \frac{1}{\left(\frac{1}{\omega L}-\omega C\right)}
$$

or

$$
z_{\|}=j \frac{\omega L}{\left(1-\omega^{2} L C\right)}
$$

We add R to the above value to obtain the total impedance:

$$
z=R+j \frac{\omega L}{\left(1-\omega^{2} L C\right)}
$$

