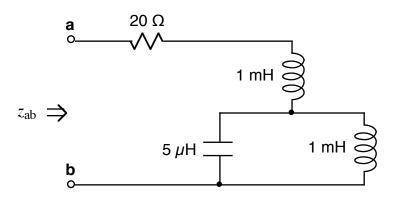


Ex:



Find a frequency, ω , that causes z_{ab} to be real, (i.e., imaginary part equals zero). Sol'n: $z_{ab} = 20 \ r + z_{LI} + z_{CI} \| z_{L2}$

For zab to be real, we must have

$$z_{L1} + z_{c} \| z_{L2} = real$$

One simple solvn is to let w=0 so both L's act like wires and C acts like open circuit.

Other potential solfns are $w = \infty$, (so L's act like opens, resulting in $z_{ab} = \infty$), and w =frequency where $z_{c} = -z_{LZ}$, (so C and L in parallel have equal but opposite impedances).

The latter case, where $z_c = -z_L$ gives the interesting result that $z_c ||z_L = \frac{L/C}{O} = \infty$ This means $z_{ab} = \infty \cdot p$. In this case, (unlike $\omega \rightarrow \infty$), $z_{ab} \rightarrow \infty$ along real axis as $z_c ||z_L \rightarrow \infty$.

Another solin is that
$$z_c || z_L$$
 has a
value is minus z_L of the top inductor.

In that case, $z_L + z_c || z_L = 0$ and $z_{ab} = 0 = wire$.
 $z_L = jwL$
 $z_c || z_L = -j || jwL = -j \cdot jwL = \frac{L/C}{wC}$
 $-j + jwL = \frac{L/C}{j(wL - \frac{L}{wC})}$
 $= -j \frac{L/C}{wL - \frac{L}{wC}}$
Thus, we want $jwL - jL/C = 0$
 $wL - \frac{L}{wC}$
or $wL = \frac{L/C}{wL - \frac{L}{wC}}$
 wC
or $wL = \frac{L/C}{wL - \frac{L}{wC}} = 0$
 $wL - \frac{L}{wC}$
 $wL - \frac{L}{wC} = 0$

or
$$w^2 L^2 = 2L$$
 or $w^2 = \frac{2}{LC}$
or $w = \sqrt{\frac{2}{LC}}$ or $w = \sqrt{\frac{2}{5uF \cdot lmH}}$
or $w = \sqrt{\frac{2}{5}G} r/s = \sqrt{400M r/s}$
or $w = 20K r/s$