Ex:

a) Find the phasor value for $i_{\mathrm{s}}(t)$.
b) Draw the frequency-domain circuit diagram, including the phasor value for $i_{\mathrm{s}}(t)$ and impedance values for components.
c) Find the phasor value for $i_{\mathrm{L}}(t)$, (measurement arrow points down).

Sol'n: a) The phasor for $A \cos (\omega t+\phi)$ is $A e^{j \phi}$.

$$
\therefore \mathbb{I}_{S}=25 \mathrm{e}^{\mathrm{j} 0^{\circ}} \mathrm{mA} \text { or } \quad 25 \angle 0^{\circ} \mathrm{mA}
$$

b) From $i_{s}(t)$, we see that $\omega=10 \mathrm{krad} / \mathrm{s}$.

Impedance $z_{L}=j \omega L=j 10 \mathrm{k} 200 \mathrm{mH}=j 2 \mathrm{k} \Omega$

$$
z_{c}=\frac{-j}{\omega C}=\frac{-j}{10 k 12.5 n F}=\frac{-j \Omega}{125 \mu}
$$

$$
z_{c}=\frac{-j .8 k \Omega}{8 k \cdot 125 \mu}=-j 8 k \Omega
$$

c) The value for \mathbb{I}_{L} is given by the current divider formula:

$$
\begin{aligned}
& \mathbb{I}_{L}=\mathbb{I}_{S} \cdot \frac{R \| z_{C}}{R \| z_{C}+z_{L}} \\
&=\mathbb{I}_{S} \frac{1}{1+\frac{z_{L}}{R \| z_{C}}} \\
&=\mathbb{I}_{S} \frac{1}{1+z_{L}\left(\frac{1}{R}+\frac{1}{z_{C}}\right)} \\
&=25 \angle 0^{\circ} \mathrm{mA} \frac{1}{1+j 2 k \Omega\left(\frac{1}{2 k \Omega}+\frac{1}{-j 8 k \Omega}\right)} \\
&=25 \angle 0^{\circ} \mathrm{mA} \frac{4}{4} \frac{1+j-\frac{1}{4}}{1+\frac{1}{2}} \\
&=25 \angle 0^{\circ} \mathrm{mA} \frac{4}{3+j 4} \\
&=25 \angle 0^{\circ} \mathrm{mA} \frac{4}{3+j 4} \cdot \frac{3-j 4}{3-j 4} \\
&=25 \angle 0^{\circ} \mathrm{mA} \\
& 1 \angle 0^{\circ} \mathrm{mA} \cdot \frac{12-j 16}{3^{2}+4^{2}} \\
&=20<-53.1^{\circ} \\
& \mathbb{I} \\
&=1 \mathrm{~mA}-53.1^{\circ}
\end{aligned}
$$

