Ex: Give numerical answers to each of the following questions:
a) Rationalize $\frac{1-j \sqrt{3}}{1+j \sqrt{3}}$. Express your answer in rectangular form.
b) Find the polar form of $[(j+1)(-1-j)]^{*}$. (Note: the asterisk means "conjugate".)
c) Find the following phasor: $\mathrm{P}\left[-\sin \left(100 t+45^{\circ}\right)\right]$.
d) Find the magnitude of $\frac{(30-j 40)}{(7-j 24) e^{j 30^{\circ}}}$.
e) Find the imaginary part of $\frac{6-j}{3 j}$.

Sol'n: a) To rationalize, we multiply top and bottom by the conjugate of the denominator:

$$
\frac{1-j \sqrt{3}}{1+j \sqrt{3}}=\frac{1-j \sqrt{3}}{1+j \sqrt{3}} \cdot \frac{1-j \sqrt{3}}{1-j \sqrt{3}}=\frac{1-3-j 2 \sqrt{3}}{1^{2}+\sqrt{3}^{2}}=\frac{-2-j 2 \sqrt{3}}{4}
$$

or

$$
\frac{1-j \sqrt{3}}{1+j \sqrt{3}}=\frac{-1}{2}-j \frac{\sqrt{3}}{2}
$$

b) The conjugate is obtained by changing j to $-j$ throughout the expression:

$$
[(j+1)(-1-j)]^{*}=(-j+1)(-1+j)=(1-j)(-1+j)
$$

Converting the rectangular forms to polar forms before multiplying yields an answer in polar form:

$$
(1-j)(-1+j)=\sqrt{2} \angle-45^{\circ} \cdot \sqrt{2} \angle 135^{\circ}=2 \angle 90^{\circ}
$$

c) The phasor of $\sin (\omega t)$ is $-j$:

$$
\mathrm{P}\left[-\sin \left(100 t+45^{\circ}\right)\right]=-(-j) \cdot 1 \angle 45^{\circ}=j \cdot 1 \angle 45^{\circ}
$$

or

$$
\mathrm{P}\left[-\sin \left(100 t+45^{\circ}\right)\right]=1 \angle 90 \cdot 1 \angle 45^{\circ}=1 \angle 45^{\circ}
$$

d) The magnitude of a product (or quotient) is the product (or quotient) of the magnitudes:

$$
\left|\frac{(30-j 40)}{(7-j 24) e^{j 30^{\circ}}}\right|=\frac{|30-j 40|}{|7-j 24|\left|e^{j 30^{\circ}}\right|}=\frac{\sqrt{30^{2}+40^{2}}}{\sqrt{7^{2}+24^{2} \cdot 1}}
$$

or

$$
\left|\frac{(30-j 40)}{(7-j 24) e^{j 30^{\circ}}}\right|=\frac{50}{25}=2
$$

e) Note that the imaginary part is a real number:

$$
\operatorname{Im}\left[\frac{6-j}{3 j}\right]=\operatorname{Im}\left[\frac{-j(6-j)}{3}\right]=\operatorname{Im}\left[\frac{-1-j 6}{3}\right]=\operatorname{Im}\left[-\frac{1}{3}-j 2\right]=-2
$$

