Ex:

a) Choose an R, an L, or a C to be placed in the dashed-line box to make

$$
i_{1}(t)=\mathrm{I}_{\mathrm{O}} \sin \left(500 t+125^{\circ}\right)
$$

where I_{0} is a positive, (i.e., nonzero and non-negative), real constant. State the value of the component you choose.
b) With your component from part (a) in the circuit, calculate the resulting value of I_{0}.

Sol'n: a) First, we convert the circuit to the frequency domain, where we have the circuit shown below. Note that for the capacitor, we have $z=1 / j \omega C=$

$$
z=\frac{1}{j \omega C}=\frac{1}{j 500 \mathrm{r} / \mathrm{s} \cdot 1 \mathrm{mF}}=-j 2 \Omega
$$

Current \mathbf{I}_{1} is given by the voltage of the source divided by the total impedance in the circuit:

$$
\mathbf{I}_{1}=\mathrm{I}_{\mathrm{O}} \angle 35^{\circ}=\frac{\mathbf{V}_{\mathrm{S}}}{\mathrm{z}_{\mathrm{Tot}}}=\frac{8 \angle 80^{\circ} \mathrm{V}}{4-j 2+z_{\text {box }}}
$$

Rearranging gives a formula for $z_{\text {box }}$:

$$
4-j 2+z_{\text {box }}=\frac{8 \angle 80^{\circ} \mathrm{V}}{\mathrm{I}_{\mathrm{o}} \angle 35^{\circ}}=\frac{8 \mathrm{~V}}{\mathrm{I}_{\mathrm{o}}} \angle 45^{\circ}
$$

We see that the total impedance must have a phase angle of 45°. This is only possible if the total impedance has positive and equal real and imaginary parts. Since the capacitor gives a negative imaginary value, the value of $z_{\text {box }}$ must overcome this negative imaginary value. Since $z_{\text {box }}$ is the impedance of a single R, L, or C, it can be only purely real (and positive) or purely imaginary. We conclude that $z_{\text {box }}$ must be imaginary and positive and yield a total impedance with the real and imaginary parts equal to the real part of the total impedance:

$$
4 \Omega-j 2 \Omega+z_{\mathrm{box}}=4+j 4 \Omega
$$

or

$$
z_{\mathrm{box}}=j 6 \Omega
$$

To obtain this impedance, we use an inductor:

$$
z_{\mathrm{box}}=j \omega L=j 6 \Omega
$$

or

$$
\omega L=6 \Omega
$$

or

$$
L=\frac{6 \Omega}{\omega}=\frac{6 \Omega}{500}=12 \mathrm{mH}
$$

b) From part (a), we see that $z_{\text {box }}=4+j 4 \Omega$. We use Ohm's law to find the current, and we take the magnitude of the equation to find I_{0} :

$$
\mathbf{I}_{1}=\frac{\mathbf{V}_{\mathrm{s}}}{4+j 4 \Omega}=\frac{8 \angle 80^{\circ} \mathrm{V}}{4 \sqrt{2} \angle 45^{\circ} \Omega}=2 \sqrt{2} \angle 35^{\circ} \mathrm{A}
$$

or

$$
\mathrm{I}_{\mathrm{o}}=\left|\frac{\mathbf{V}_{\mathrm{S}}}{4+j 4 \Omega}\right|=\left|\frac{8 \angle 80^{\circ} \mathrm{V}}{4 \sqrt{2} \angle 45^{\circ} \Omega}\right|=\left|\frac{8 \mathrm{~V}}{4 \sqrt{2} \Omega}\right|=2 \sqrt{2} \mathrm{~A}
$$

