1.

Rail voltages $= \pm 10 \mathrm{~V}$
The above circuit operates in linear mode. Derive a symbolic expression for v_{0}. The expression must contain not more than the parameters $i_{\mathrm{s} 1}, i_{\mathrm{s} 2}, R_{1}, R_{2}$, and R_{3}.
2.
a) If $i_{\mathrm{s} 1}=0 \mu \mathrm{~A}$, find the value of R_{3} that will yield an output voltage of $v_{\mathrm{O}}=1 \mathrm{~V}$ when $i_{\mathrm{s} 2}=10 \mu \mathrm{~A}$.
b) Derive a symbolic expression for v_{O} in terms of common mode and differential input currents:

$$
i_{\Sigma} \equiv \frac{i_{s 1}+i_{s 2}}{2} \quad \text { and } \quad i_{\Delta} \equiv \frac{i_{s 1}-i_{s 2}}{2}
$$

The expression must contain not more than the parameters $i_{\Sigma}, i_{\Delta}, R_{1}, R_{2}$, and R_{3}. Write the expression as i_{Σ} times a term plus i_{Δ} times a term.
Hint: start by writing $i_{\mathrm{s} 1}$ and $i_{\mathrm{s} 2}$ in terms of i_{Σ} and i_{Δ} :

$$
i_{s 1} \equiv i_{\Sigma}+i_{\Delta} \quad \text { and } \quad i_{s 2} \equiv i_{\Sigma}-i_{\Delta}
$$

3. If $i_{\Delta}=0$ and $R_{1}=R_{2}$, write a formula for the current flowing from left to right in R_{3} as a function of not more (and possibly less) than the following terms: i_{Σ}, R_{1}, R_{2}, and R_{3}.
4.

Find the Thevenin equivalent of the above circuit relative to terminals \mathbf{a} and \mathbf{b}.
5. a) If we attach R_{L} to terminals \mathbf{a} and \mathbf{b}, find the value of R_{L} that will absorb maximum power.
b) Calculate the value of that maximum power absorbed by R_{L}.

