

1.

Rail voltages = ± 10 V

The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters i_{s1} , i_{s2} , R_1 , R_2 , and R_3 .

2.

a) If $i_{s1} = 0 \ \mu A$, find the value of R_3 that will yield an output voltage of $v_0 = 1 \ V$ when $i_{s2} = 10 \ \mu A$.

b) Derive a symbolic expression for v_0 in terms of common mode and differential input currents:

$$i_{\Sigma} = \frac{i_{s1} + i_{s2}}{2}$$
 and $i_{\Delta} = \frac{i_{s1} - i_{s2}}{2}$

The expression must contain not more than the parameters i_{Σ} , i_{Δ} , R_1 , R_2 , and R_3 . Write the expression as i_{Σ} times a term plus i_{Δ} times a term. Hint: start by writing i_{s1} and i_{s2} in terms of i_{Σ} and i_{Δ} :

 $i_{s1} \equiv i_{\Sigma} + i_{\Delta}$ and $i_{s2} \equiv i_{\Sigma} - i_{\Delta}$

3. If $i_{\Delta} = 0$ and $R_1 = R_2$, write a formula for the current flowing from left to right in R_3 as a function of not more (and possibly less) than the following terms: i_{Σ} , R_1 , R_2 , and R_3 .

Find the Thevenin equivalent of the above circuit relative to terminals **a** and **b**.

5.

- a) If we attach $R_{\rm L}$ to terminals **a** and **b**, find the value of $R_{\rm L}$ that will absorb maximum power.
- b) Calculate the value of that maximum power absorbed by $R_{\rm L}$.