Ex:

a) Find the Thevenin equivalent of the above circuit relative to terminals \mathbf{a} and \mathbf{b}.
b) If we attach R_{L} to terminals \mathbf{a} and \mathbf{b}, find the value of R_{L} that will absorb maximum power.
c) Calculate the value of that maximum power absorbed by R_{L}.
sol'n: a) $\quad V_{T h}=v_{a, b}$ with nothing connected across a, b
One approach is to use the node-voltage method:

Using the voltage-divider formula, we relate v_{x} to $v_{1}=$

$$
v_{x}=v_{1} \cdot \frac{1 \Omega}{1 \Omega+2 \Omega}=\frac{v_{1}}{3}
$$

Node V_{1} eq'n:

$$
\frac{V_{1}}{3}-15 A+\frac{V_{1}}{1 \Omega+2 \Omega}=O A
$$

or $\frac{2 v_{1}}{3 \Omega}=15 \mathrm{~A}$
or $V_{1}=\frac{3}{2} \Omega \cdot 15 \mathrm{~A}=22.5 \mathrm{~V}$
To find $V_{T h}$, we again useavoltage-divider formula:

$$
V_{T h}=V_{1} \cdot \frac{2 \Omega}{1 \Omega+2 \Omega}=22.5 \mathrm{~V} \cdot \frac{2}{3}=15 \mathrm{~V}
$$

Note: Another approach is to replace the dependent source with a resistor, To do $s 0$, we write the voltage across the dependent source in terms of dependent variable v_{x}. From an egin above, we have $v_{1}=3 v_{x}$.

Note: Req changes with R across a, b.

One way to find $R_{T h}$ is to use

$$
R_{T h}=\frac{v_{T h}}{i_{S c}}
$$

where $i_{s c} \equiv$ short circuit from a to b

We may ignore the 2Ω resistor that is shorted out.

Node v_{1} eq n: (Note that $v_{x}=v_{1}$.)

$$
V_{1}-15 A+\frac{V_{1}}{1 \Omega}=O A
$$

or

$$
\frac{2 v_{1}}{1 \Omega}=15 \mathrm{~A}
$$

or

$$
v_{1}=15 \mathrm{~A} \cdot \frac{1 \Omega}{2}=7.5 \mathrm{~V}
$$

Our current is $i_{s c}=\frac{v_{1}}{1 \Omega}=\frac{7.5 \mathrm{~V}}{1 \Omega}=7.5 \mathrm{~A}$.

$$
R_{T h}=\frac{V_{T h}}{L_{S C}}=\frac{15 \mathrm{~V}}{7,5 \mathrm{~A}}=2 \Omega
$$

Note: we could replace the dependent source with $\operatorname{Reg}=\frac{V}{i}=\frac{V_{x}}{V_{x}}=1 \Omega$ for $i_{s d}$.
b) $\quad R_{L}=R_{T h}=2 \Omega$ for max pour x fer
c) $P_{\max }=\frac{V_{T h}^{2}}{4 R_{T h}}=\frac{15^{2}}{4 \cdot 2 \Omega}=28.125 \mathrm{~W}$

