

After being open for a long time, the switch closes at time $t = t_0$.

Choose either an *R* or *L* to go in box **a** and either an *R* or *L* to go in box **b** to produce the $v_0(t)$ shown above. (You will need one *R* and one *L*. Use an *R* value of 1.3 k Ω . Also, note that v_0 stays low forever after $t_0 + 16 \mu s$.) Specify which element goes in each box and its value.

- 2. Sketch $v_1(t)$, showing numerical values appropriately.
- 3. a) Sketch $v_2(t)$, showing numerical values appropriately.
 - b) Sketch $v_3(t)$. Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 16 \,\mu\text{s}$, and for $t > t_0 + 16 \,\mu\text{s}$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

A frequency-domain circuit is shown above. Write the value of phasor voltage V_1 in rectangular form.

5. Given $\omega = 500$ rad/s, write a numerical time-domain expression for $v_1(t)$, the inverse phasor of V_1 .