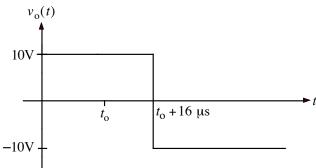


After being open for a long time, the switch closes at time $t = t_0$.

Rail voltages = $\pm 10 \text{ V}$



- a) Choose either an R or L to go in box \mathbf{a} and either an R or L to go in box \mathbf{b} to produce the $v_0(t)$ shown above. (You will need one R and one L. Use an R value of 1.3 k Ω . Also, note that v_0 stays low forever after $t_0 + 16 \,\mu s$.) Specify which element goes in each box and its value.
- b) Sketch $v_1(t)$, showing numerical values appropriately.
- c) Sketch $v_2(t)$, showing numerical values appropriately.
- d) Sketch $v_3(t)$. Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 16 \,\mu\text{s}$, and for $t > t_0 + 16 \,\mu\text{s}$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

sol'n: a) We first find V_1 , which is constant. The IKD resistor and 2mA source are across the 6V source. Because they are across the 6V source, they may be ignored. $V_1 = 6V$ regardless of what is across the 6V source.

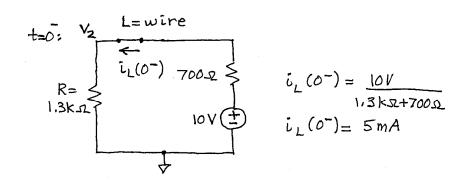
V, = 6 V

For boxes **a** and **b**, we observe that, if we had an L in **b**, that L will act like a wire at t=0. This would make $v_2(0^-)=oV$. The op-amp acts like a comparator, with the output equal to t/oV according to the sign of v_2-v_1 . For $v_2=oV$ and $v_1=bV$ we would have $v_2-v_1=o-bV=-bV$ and $v_0=-loV$ at t=o. This differs from the plot of $v_0(t)$ given in the problem statement. Thus, **b** must contain an R rather than an L.

Because the output voltage, $v_o(t)$, changes 16 us after the switch moves, box a must contain an L to give the circuit a time-varying behavior.

a = Lb = R = 1.3k(from prob statement)

At t=0, we have the following equivalent circuit:



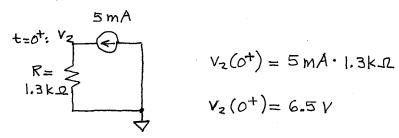
This is a voltage divider.

$$V_2(0^-) = 10V \cdot 1.3k\Omega = 6.5V$$

 $1.3k\Omega + 700\Omega$

We note that $\mathbf{v}_{2}(0^{-}) = 6.5 > \mathbf{v}_{1}(0^{-}) = 6V$ and $V_{2} - V_{1} = 6.5 - 6V = 0.5V > 0V$ so $V_{0}(0^{-}) = +10V_{1}$ as desired.

At t=0+, we have the following equivalent circuit:



At $t=0^+$, $v_2-v_1=6.5v-6v=0.5v>0v$ so $v_0(0^+)=+10V$, as desired.

As t→∞, we have the following equivalent circuit:

$$t \rightarrow \infty$$
; V_2 L=wire

 $R = \begin{cases} 1.3 \text{ kg} \end{cases}$

Since there is no power source, $V_2(t\rightarrow \infty) = 0V$

The time constant of the circuit is

$$\tau = \underline{L} = \underline{L}$$

$$R_{Th} = 1.3 \text{k.s.}$$

Using the general form of solution for RL circuits, we write an expression for $v_2(t>0)$:

$$v_2(t>0) = v_2(t\to\infty) + [v_2(0^+) - v_2(t\to\infty)] = v_2(t\to\infty) + [v_2(0^+) - v_2(t\to\infty)] = v_2(t\to\infty) = v_2(t$$

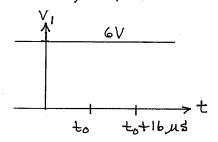
The op-amp output switches from high to low when $V_2(t) = V$, = 6V, which must occur at $t = t_0 + 16 \mu s$.

Setting $t_0=0$, we solve for L in $V_1=V_2$ at $t=16\,\mu\text{s}$.

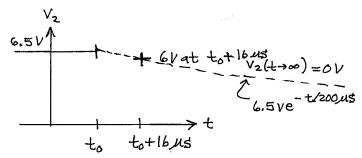
$$6V = 6.5 V e^{-16 \mu s / \tau}$$

or
$$t = \frac{-16\mu s}{4m(6/6.5)} = 200 \mu s$$

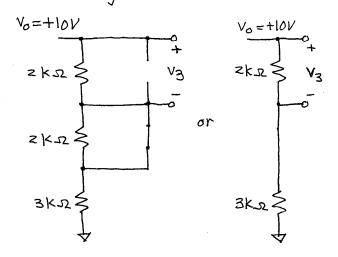
b) From above, v,(t)=6V at all times



c) From above, $V_2(0^-) = 6.5V$ and $V_2(t>0) = 6.5e^{-t/200MS}V$ Also, $V_2(t=16MS) = V_1 = 6V$

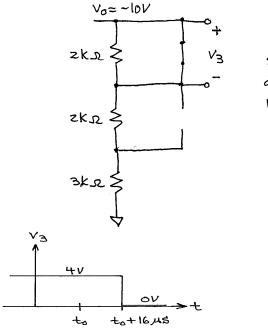


d) When Vo = +10V, the equivalent circuit on the right side is as follows:



We have a voltage divider: $v_3 = 10V \cdot 2k\Omega$ $2k\Omega + 3k\Omega$ $V_3 = 4V$

When $v_0 = -10V$, the equivalent circuit on the right side is as follows:



Since we have a short across V_{3} , $V_{3} = OV$.