

After being open for a long time, the switch closes at time $t=t_{\mathrm{o}}$.
Rail voltages $= \pm 10 \mathrm{~V}$

a) Choose either an R or L to go in box \mathbf{a} and either an R or L to go in box \mathbf{b} to produce the $v_{0}(\mathrm{t})$ shown above. (You will need one R and one L. Use an R value of $1.3 \mathrm{k} \Omega$. Also, note that v_{o} stays low forever after $\mathrm{t}_{\mathrm{o}}+16 \mu \mathrm{~s}$.) Specify which element goes in each box and its value.
b) Sketch $v_{1}(t)$, showing numerical values appropriately.
c) Sketch $v_{2}(t)$, showing numerical values appropriately.
d) Sketch $v_{3}(t)$. Show numerical values for $t<t_{\mathrm{o}}$, for $t_{\mathrm{O}}<t<t_{\mathrm{O}}+16 \mu \mathrm{~s}$, and for $t>t_{\mathrm{o}}+16 \mu \mathrm{~s}$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

Sol'n: a) We first find v_{1}, which is constant. The $1 \mathrm{k} \Omega$ resistor and 2 mA source are across the 6 V source. Because they are across the 6 V source, they may be ignored. $v_{1}=6 \mathrm{~V}$ regardless of what is across the 6 V source.

$$
v_{1}=6 V
$$

For boxes \mathbf{a} and \mathbf{b}, we observe that, if we had an L in b, that L will act like a wire at $t=0^{-}$. This would make $v_{2}\left(0^{-}\right)=o \mathrm{~V}$. The op-amp acts like a comparator, with the output equal to 110 V according to the sign of $v_{2}-v_{1}$. For $v_{2}=0 \mathrm{~V}$ and $v_{1}=6 \mathrm{~V}$ we would have $v_{2}-v_{1}=0-6 V=-6 \mathrm{~V}$ and $v_{0}=-10 \mathrm{~V}$ at $t=0^{-}$. This differs from the plat of $v_{0}(t)$ given in the problem statement. Thus, \mathbf{b} must contain an R rather than an L.

Because the output voltage, $v_{0}(t)$, changes 16μ after the switch moves, box a must contain an L to give the circuit a time-varying behavior.

$$
\begin{aligned}
& a=L \\
& b=R=1,3 k \text { (from prob statement) }
\end{aligned}
$$

At $t=0^{-}$, we have the following equivalent circuit:

This is a voltage divider.

$$
v_{2}\left(0^{-}\right)=10 \mathrm{~V} \cdot \frac{1.3 \mathrm{k} \Omega}{1.3 \mathrm{k} \Omega+700 \Omega}=6.5 \mathrm{~V}
$$

We note that $v_{2}\left(0^{-}\right)=6.5>v_{1}\left(0^{-}\right)=6 \mathrm{~V}$ and $V_{2}-V_{1}=6.5-6 \mathrm{~V}=0.5 \mathrm{~V}>0 \mathrm{~V}$ so $v_{0}\left(\mathrm{O}^{-}\right)=+10 \mathrm{~V}$, as desired.

At $t=0^{+}$, we have the following equivalent circuit:

At $t=0^{+}, v_{2}-v_{1}=6.5 v-6 v=0.5 v>0 \mathrm{~V}$ so $v_{0}\left(0^{+}\right)=+10 \mathrm{~V}$, as desired.

As $t \rightarrow \infty$, we have the following equivalent circuit:

Since there is no power source, $v_{2}(t \rightarrow \infty)=\Delta V$

The time constant of the circuit is

$$
\tau=\frac{L}{R_{T h}}=\frac{L}{1.3 \mathrm{k} \Omega}
$$

Using the general form of solution for RL circuits, we write an expression for $v_{2}(t>0)=$

$$
v_{2}(t>0)=v_{2}(t \rightarrow \infty)+\left[v_{2}\left(0^{+}\right)-v_{2}(t \rightarrow \infty)\right] e^{-t / \tau}
$$

or $V_{2}(t>0)=O V+[6.5 V-0 V] e^{-t / \tau}$
or $v_{2}(t>0)=6.5 \mathrm{~V} e^{-t / \tau}$
The op-amp output switches from high to low when $v_{2}(t)=v_{1}=6 \mathrm{~V}$, which must occur at $t=t_{0}+16 \mu s$,
setting $t_{0}=0$, we solve for L in $v_{1}=v_{2}$ at $t=16 \mu s$.

$$
\begin{gathered}
6 V=6.5 V e^{-16 \mu s / \tau} \\
\text { or } \ln (6 / 6.5)=-16 \mu s / \tau
\end{gathered}
$$

$$
\begin{aligned}
\text { or } \tau= & \frac{-16 \mu s}{\ln (6 / 6.5)} \doteq 200 \mu \mathrm{~s} \\
L= & \tau \cdot R_{\mathrm{Th}}=200 \mu \mathrm{~s} \cdot 1.3 \mathrm{k} \Omega=260 \mathrm{mH} \\
& \begin{array}{l}
R=1.3 \mathrm{k} \Omega \\
L
\end{array}=260 \mathrm{mH}
\end{aligned}
$$

b) From above, $v_{1}(t)=6 \mathrm{~V}$ at all times

c) From above, $v_{2}\left(0^{-}\right)=6.5 \mathrm{~V}$ and

$$
\begin{aligned}
& v_{2}\left(0^{-}\right)=6.5 V \text { and } \\
& v_{2}(t>0)=6.5 \mathrm{e}^{-t / 200 \mu \mathrm{~s}} v
\end{aligned}
$$

Also, $v_{2}(t=16 \mu s)=v_{1}=6 \mathrm{~V}$

d) When $v_{0}=+10 v$, the equivalent circuit on the right side is as follows:

We have a voltage divider: $v_{3}=\frac{10 \mathrm{~V}-2 \mathrm{k} \Omega}{2 k \Omega+3 k \Omega}$

$$
v_{3}=4 v
$$

When $v_{0}=-10 \mathrm{~V}$, the equivalent circuit on the right side is as follows:

