Ex: a) Solve the following simultaneous equations for v_{1} and v_{2} :

$$
\begin{aligned}
& 6 v_{1}-v_{2}=39 \\
& \frac{5\left(v_{2}-v_{1}\right)}{9}+\frac{v_{2}}{3}=-6
\end{aligned}
$$

b) Solve the following simultaneous equations for R_{1} and R_{2} :

$$
\begin{aligned}
& \sqrt{R_{1}+R_{2}^{2}}=5 R_{2} \\
& \frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{24}{25}
\end{aligned}
$$

Sol'n: a) We first decide which equation is simpler. Then we solve that equation for one variable in terms of the other. In the present case, the first equation is simpler.

$$
6 v_{1}-v_{2}=39
$$

or

$$
-v_{2}=39-6 v_{1}
$$

or, if we multiply both sides by -1 :

$$
v_{2}=-39+6 v_{1} .
$$

Now we turn to the second equation:

$$
\frac{5\left(v_{2}-v_{1}\right)}{9}+\frac{v_{2}}{3}=-6
$$

Multiplying this equation by the common denominator, 9 , simplifies the equation:

$$
5\left(v_{2}-v_{1}\right)+3 v_{2}=-54
$$

or

$$
-5 v_{1}+8 v_{2}=-54
$$

Substituting for v_{2} yields the following equation:

$$
-5 v_{1}+8\left(-39+6 v_{1}\right)=-54
$$

or

$$
-5 v_{1}+8(-39)+48 v_{1}=-54
$$

We factor out the constants multiplying v_{1} :

$$
43 v_{1}=-54+8(39)=258
$$

or

$$
v_{1}=\frac{258}{43}=6
$$

Using this value in our earlier equation for v_{2} in terms of v_{1} yields the following result:

$$
v_{2}=-39+6 v_{1}=-39+6(6)=-3
$$

b) There are various approaches one might take here. One choice is to solve the first equation for R_{1} in terms of R_{2} :

$$
\sqrt{R_{1}+R_{2}^{2}}=5 R_{2}
$$

or

$$
R_{1}+R_{2}^{2}=\left(5 R_{2}\right)^{2}
$$

or

$$
R_{1}=25 R_{2}^{2}-R_{2}^{2}=24 R_{2}^{2}
$$

Before substituting this into the second equation, we simplify the second equation:

$$
\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{24}{25}
$$

Inverting both sides leads to simplification:

$$
\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{25}{24}
$$

Now we substitute for R_{1} :

$$
\frac{1}{24 R_{2}^{2}}+\frac{1}{R_{2}}=\frac{25}{24}
$$

Multiplying by the common denominator, $24 R_{2}^{2}$, yields a quadratic equation:

$$
1+24 R_{2}=25 R_{2}^{2}
$$

or

$$
25 R_{2}^{2}-24 R_{2}-1=0
$$

or

$$
R_{2}^{2}-\frac{24}{25} R_{2}-\frac{1}{25}=0
$$

We have two roots:

$$
R_{2}=\frac{24}{50} \pm \sqrt{\left(\frac{24}{50}\right)^{2}+\frac{1}{25}}=\frac{24}{50} \pm \sqrt{\left(\frac{12}{25}\right)^{2}+\frac{1}{25}}=\frac{12}{25} \pm \frac{13}{25}
$$

or

$$
R_{2}=1 \text { or } R_{2}=-\frac{1}{25}
$$

Going back to the original first equation, if the square root represents the positive square root, we discover that only the positive value of R_{1} is valid. Thus, $R_{2}=1$.

Using our earlier equation for R_{1} in terms of R_{2}, we have

$$
R_{1}=24 R_{2}^{2}=24(1)^{2}=24(1)=24
$$

Note: If the R 's represent resistor values, as they often will, the values for R_{1} and R_{2} would have to be positive.

